
Technical Challenges

Design Goals

Taming Mobile Hardware & OS Diversity for
Comprehensive Software Analysis

Ardalan Amiri Sani*, Zhiyun Qian†

*University of California, Irvine, †University of California, Riverside

Solution: Hybrid Mobile Farm

Problem Statement

● Mobile devices are everywhere!
● Software running in these device must be

tested for:
○ Functionality, e.g., crash analysis
○ Security, e.g., vulnerability analysis

● Challenge: these devices and their
software are extremely diverse, requiring
expensive and time-consuming
device-specific testing.

Tests should be performed on plenty of devices

 Expensive and Time consuming

Smartphones Wearables Tablets

● Main idea: use Mobile Virtual Instances in
servers for testing

● A Mobile Virtual Instance resembles a real
mobile device

● Challenge: supporting Input/Output (I/O) for
these instances.

● Solution: remote I/O to access real I/O
devices in real devices

Tablets

Smartphones

Wearables

Development
boards &

standalone
components

Hypervisor

Server

Register
read/write

Virtual devices

Aplications
Android
services

HAL

Device
drivers

- Schedule VMs
- Manage
 device usage
- Forward I/O
- Perform dynamic
 analysis and
 other tests
- Schedule traffic

Devices
Real devices

Device stub
(support
register

read/write,
interrupt, and

DMA)

Management VM

● Advantage 1: using
VMs for testing

○ Full control over all
layers of software stack

○ Running analysis on a
powerful server

○ Hardware consolidation
by using VMs rather
than mobile devices

● Advantage2: using real
device’s software

○ Finding device specific
bugs and
vulnerabilities

○ Much better testing
platform for kernel and
driver code (e.g.,
inspect crashes)

● Analyze known or unknown
kernel/driver exploits. Adapt exploits
from one platform to another.

● Perform dynamic analysis (e.g.,
fuzzing) on different parts of system
software for a variety of devices
○ Focus on device specific parts of the

system (e.g., device drivers)
● Optimize the mobile farm for the speed

of testing and high degree of hardware
consolidation

● Booting an unmodified mobile OS
image of an ARM based mobile device
in an x86 server
○ The source code for device OS may

not be available
● Timing differences, which may change

the behavior of the kernel/driver
○ Slow remote I/O can cause timeouts.

● Optimizing communication bandwidth
○ Specially for high throughput
○ I/O devices, such as camera and

GPU

Acknowledgements

● Supported by NSF
 CNS-1617481

Architecture

Interrupt,
DMA

