
Scaling the Real-time Capabilities of
Powertrain Controllers in Automotive Systems

Background
-  The complexity and the size of

automotive control systems are
increasing.

-  Such systems have hard real-time
constraints, thus high-
performance-yet-predictable
control systems are needed.

PI: Aviral Shrivastava, Compiler Microarchitecture Lab, Arizona State University

Source code
Task period

of cores
SPM size per core

Core speed

Task	Info	 Architecture	Info	

Mapping/
scheduling

Inter-task	Analyzer	 Intra-task	Analyzer	

Code	Synthesizer	

WCET estimation

Intra-task SPM
partitioning

Code generation

Inter-task SPM
partitioning

Inter-task runtime management

WCRT
estimation

Application
Size/ Complexity

4-bit
microprocessors

80’s 2000’s 2020’s

Vehicles communicating
with other vehicles and

road infrastructure

Multiple processors
over in-vehicle

network

•  Increasing	regula:ons	
on	fuel	efficiency	&	
emissions	

•  More	and	more	ADAS	
(Advanced	Driver	
Assistance	Systems)	

…	

Problem
-  Current control system design in

practice relies on testing, even
though the correctness can only be
guaranteed by static analysis at
design time, not by testing.

-  This is because of the
unacceptable amount of
pessimism in the analysis results.

Execution time

of

 m
ea

su
re

m
en

ts

A safe upper bound
found by analysis

All execution scenarios

Observed by testing

Too much
overestimation!

Caches:
The main culprit
-  HW uncertainties are becoming

more significant due to ever-
increasing application sizes and
system complexity.

-  Caches are the main source that
increases the uncertainties.

SW	uncertain:es	
(Loop	bounds,	
pointer	values,	

infeasible	paths,	…)	

Microarchitectural	
state	uncertain:es	
(Caches,	pipeline,	
branch	predictors)	

Significance

Time

•  MISRA C
coding
standards

•  user
annotations

...

•  Application size grows
beyond on-chip memory
sizes

•  Resource sharing in multi-
tasking on multi-core
architectures

Solution: Using scratchpad memories (SPMs)

Caches make:
-  WCET analysis difficult and pessimistic
-  WCRT analysis practically impossible

-  Replace caches with scratchpad memories (SPMs)
-  SPMs have the following benefits:

-  Tight WCET estimation thanks to explicit management
-  Better performance than caches

-  [DAC 2013] SSDM: Smart Stack Data Management
for Software Managed Multicores (SMMs)

-  [CODES+ISSS 2013] CMSM: An Efficient and
Effective Code Management for Software Managed
Multicores

SPM Management Framework

0 1

A	

A	 B	

C	 B	

SPM

...	
	
DMA	load	A	to	0	
…	
	
DMA	load	B	to	1	
…	
	
DMA	load	C	to	0	
…	

Predictable memory behavior

-  Using SPMs enables various optimizations in compiler
and scheduler to improve real-time capabilities, tailored
to each application (no hardwired logic).

Results with Code Management

0"
0.2"
0.4"
0.6"
0.8"
1"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

Ca
ch
e"

SP
M"

matmult"
1.1KB,"
0.3KB"

lms"
3.9KB,""
1KB"

compress"
3.1KB,"
0.9KB"

sha"
3.2KB,"
1.2KB"

edn"
4.6KB,"
1.9KB"

adpcm"
8.3KB,"
2.3KB"

rijndael"
9.3KB,"
3.1KB"

statemate"
11KB,"
3.5KB"

1REG"
28KB,"
7.6KB"

DAP1"
36KB,"
28KB"

susan"
51KB,"
11KB"

DAP3"
56KB,"
42KB"

Normalized+WCET+Es1mates+ Cache"C" Cache"L" SPM"C" SPM"L" SPM"M"

-0.1% -0.2% -24% -43% -8% -9% -81% -70% -76% -90% -89% -79%

Code size
Max function size

Figure 5: WCET is reduced up to 90% compared to 4-way set associative cache of 4KB with LRU replacement policy.

the cache miss overhead is relatively significant due to less
iteration counts (< 50), so our approach shows more signifi-
cant WCET reduction thanks to the burst mode DMA trans-
fers. The WCET reduction is significant for larger bench-
marks. This is mainly caused by large nested loops with it-
then-else or switch-case conditions, which frequently appear
in these benchmarks. Without condition statements, once
an instruction is loaded into the cache line by a cold miss,
the fetch to the instruction can become cache hits for the rest
of the iterations. However, when there are many condition
statements in a loop, the number of instructions compete for
a cache line in an abstract cache state increases and finally
become larger than the associativity of the cache, which re-
sults in always-miss (assuming cache misses for all itera-
tions) [4]. This e↵ect becomes significant in nested loops
since the iteration counts can be high. With the SPM, on
the other hand, DMA operations in loops can be avoided
in most cases thanks to the code mapper which can find
an optimal partition-to-region mapping for WCET in the
given SPM size. Splitting functions into partitions greatly
helps in this because it can shrink functions’ footprints by
keeping only the important parts, such as loop bodies, in
the SPM. The largest functions of ‘1REG’, ‘DAP1’, ‘susan’,
and ‘DAP3’ are much larger than 4KB. These benchmarks
cannot run on 4KB SPM without function splitting.

5. CONCLUSIONS
This paper presents a new code management technique for

SMM architectures. The proposed technique splits functions
into partitions whereas all previous techniques manage code
at the granularity of functions. Splitting functions can im-
prove SPM space utilization and solve the limitation on the
sizes of applications caused by by function-granularity man-
agement. The functions to split and the number of parti-
tions are selected heuristically using a feedback loop from an
optimal code mapping technique that allocates SPM space
for each partition and estimates the WCET. The results
on various benchmarks including automotive control appli-
cations show that the proposed technique can significantly
reduce the WCET estimates compared to the optimal solu-
tions found by function-granularity technique and 4-way set
associative cache of the same size. Our future work includes
making the function splitting algorithm optimal and finding
the minimal SPM size for a task to meet its deadline.

6. REFERENCES
[1] K. Bai, J. Lu, A. Shrivastava, and B. Holton. CMSM:

An E�cient and E↵ective Code Management for

Software Managed Multicores. In Proc.
CODES+ISSS, 2013.

[2] M. A. Baker, A. Panda, N. Ghadge, A. Kadne, and
K. S. Chatha. A Performance Model and Code
Overlay Generator for Scratchpad Enhanced
Embedded Processors. In Proc. CODES+ISSS, 2010.

[3] D. Broman, P. Derler, and J. C. Eidson. Temporal
issues in cyber-physical systems. JIISc, 93(3), 2013.

[4] C. Cullmann. Cache persistence analysis: Theory and
practice. ACM TECS, 12(1s), 2013.

[5] H. Falk and J. C. Kleinsorge. Optimal Static
WCET-Aware Scratchpad Allocation of Program
Code. In Proc. DAC, 2009.

[6] H. Falk and H. Kotthaus. Wcet-driven cache-aware
code positioning. In Proc. CASES, 2011.

[7] I. Gurobi Optimization. Gurobi Optimizer Reference
Manual, 2013.

[8] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.
The Mälardalen WCET Benchmarks - Past, Present
and Future. In Proc. WCET, 2010.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A
Free, Commercially Representative Embedded
Benchmark Suite. In Proc. WWC, 2001.

[10] S. Hepp and F. Brandner. Splitting functions into
single-entry regions. In Proc. CASES, 2014.

[11] S. Jung, A. Shrivastava, and K. Bai. Dynamic Code
Mapping for Limited Local Memory Systems. In Proc.
ASAP, 2010.

[12] Y. Kim, D. Broman, J. Cai, and A. Shrivastava.
WCET-Aware Dynamic Code Management on
Scratchpads for Software-Managed Multicores. In
Proc. RTAS, 2014.

[13] M. Schoeberl. A time predictable instruction cache for
a java processor. LNCS, 3292, 2004.

[14] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing
analysis for tdma arbitration in resource sharing
systems. In Proc. RTAS, 2010.

[15] L. Thiele and R. Wilhelm. Design for timing
predictability. Real-Time Systems, 28, 2004.

[16] J. Whitham and N. Audsley. Implementing
Time-Predictable Load and Store Operations. In Proc.
EMSOFT, 2009.

[17] H. Wu, J. Xue, and S. Parameswaran. Optimal
WCET-Aware Code Selection for Scratchpad Memory.
In Proc. EMSOFT, 2010.

Toyota proprietary powertrain controller models

Management overhead

DMA operations overhead

Computation time
Cache miss overhead

4KB SPM vs. 4KB 4-way set associative cache (LRU) This work was supported in part by the
Center for Hybrid and Embedded
Software Systems (CHESS) at UC
Berkeley, Toyota Motors and the
National Science Foundation grant CNS
1525855
Any opinions, findings, and conclusions
or recommendations expressed in this
material are those of the author(s) and
do not necessarily reflect the views of
any of the sponsors.

Acknowledgement

-  SPM space is partitioned for each task,
and each type of data to privatize
memory accesses.

-  SPM space is allocated to minimize
memory interference in the worst-case
execution path.

Core	

Core	 Core	

Core	

τ1	 τ2	 τ3	

code	stack	 global	

f1	 f2	 f3	 f4	

Inter-task SPM
partitioning

Task mapping

Intra-task SPM
partitioning

SPM space
allocation

Cores

Local SPM

SPM partition
for a task

SPM partition for a
type of data

Caches in WCET Analysis

Jan Reineke Saarland University

Contact Info:
eMail: reineke@cs.uni-sb.de
Web: http://rw4.cs.uni-sb.de/~reineke
Phone: +49 681 302 55 73
Fax: +49 681 302 30 65

Uncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=� Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis November 7th , 2008 10 / 33

Uncertainty in Cache Analysis
Predictability Metrics

Evict
Fill

[dex]
[fde]

[gfd]

[hgf][fec]

[gfe]

[fed]

Sequence: �a, . . . , e, f, g, h⇥

Jan Reineke Caches in WCET Analysis November 7th , 2008 11 / 33

Predictability Metrics Evaluation of Policies

Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k � 1 3k � 1 15 23
MRU 2k � 2 ⇤/3k � 4 14 ⇤/20
PLRU k

2 log2 k + 1 k
2 log2 k + k � 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

�⇥ Use LRU.

How to obtain may- and must-information within the given limits for
other policies?

Jan Reineke Caches in WCET Analysis November 7th , 2008 13 / 33

Evaluation of Policies

LRU is optimal wrt. metrics
FIFO, MRU, PLRU less predictable

use LRU

Relative Competitiveness of Cache Replacement Policies
Jan Reineke Daniel Grund

Saarland University

Introduction
In order to fulfill stringent performance requirements, caches are now also
used in hard real-time systems. In such systems, upper and lower bounds on
the execution times of a task have to be computed. To obtain tight bounds,
timing analyses must take into account the cache architecture. However,
developing cache analyses – analyses that determine whether a memory
access is a hit or a miss – is a difficult problem for some cache architectures.

Goal
Determine safe bounds on the number of cache hits and misses by a task T
under FIFO(k), PLRU(l), or any another replacement policy.

Approach

1. Determine competitiveness of the desired policy P relative to policy Q.

mP ⇥ k · mQ + c mQ(T) = mP(T)

2. Compute performance prediction of task T for policy Q by cache analysis.

mP ⇥ k · mQ + c mQ(T) = mP(T)

3. Calculate upper bounds on the number of misses for P using the cache
analysis results for Q and the competitiveness results of P relative to Q.

mP ⇥ k · mQ + c mQ(T) = mP(T)

Relative Competitiveness
Competitiveness (Sleator and Tarjan): worst-case performance of an online
policy relative to the optimal offline policy.
Relative competitiveness: worst-case performance of an online policy relative
to another online policy.

Let mP (q, s) be the number of misses incurred by policy P , starting in cache-set
state q, processing memory access sequence s.
Definition 1 (Relative Miss-Competitiveness).
Policy P is k-miss-competitive relative to policy Q with additive constant c, if

mP (p, s) ⇥ k · mQ(q, s) + c

for all access sequences s � S and comp. cache-set states p � CP, q � CQ.

“Policy P will incur at most k times the number of misses of policy Q plus
constant c on any access sequence.”

Hit-competitiveness is defined analogously.
The competitive miss ratio cm

P,Q is the smallest k such that P is k-miss-
competitive relative to Q with some additive constant.

Computing Competitive Ratios
P and Q induce a transition system that captures how the two policies act
relative to each other, processing the same memory accesses:

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd]FIFO, [abcd]LRU
e

(m, m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m, m)

c

(h, m)
[deab]FIFO, [deab]LRU

d

(m, h)

Legend
[abcd]FIFO Cache-set state

· ·d Memory access

(h, m), . . . Misses in pairs of
cache-set states

LRU
MRU

last-in
first-in

Figure 1: Small part of the transition system in the computation of competitive-
ness results for FIFO(4) vs. LRU(4).

Competitive ratio = maximum ratio of misses in policy P relative to the number
of misses in policy Q in transition system.

Quotient Transition System
Problem: The induced transition system is ⌥ large.
Goal : Construct finite transition system with same properties.
Observation: Only the relative positions of elements matter:

[abc]LRU, [b e]FIFO [fgl]LRU, [g m]FIFO⌅

[cab]LRU, [cb]FIFO

(h, m)c

[lfg]LRU, [lg]FIFO

(h, m)l

⌅

Two pairs of cache-set states are ⌅-equivalent, if they can be transformed into
each other by a renaming of their contents.
Merging equivalent pairs of cache-set states yields a finite quotient transition
system that retains competitivenss properties:

[abcd]FIFO, [abcd]LRU

(h, h)

(m, m)

[abcd]FIFO, [dabc]LRU

(h, h)

[eabc]FIFO, [edab]LRU

(m, m)

(m, h)

[eabc]FIFO, [ceda]LRU
(h, m)

Figure 2: ⌅-equivalent states are similarly colored in Figure 1. Merging equiv-
alent states yields the quotient structure depicted here.

Results
Miss-competitiveness (ratios, constants) (k, c) relating FIFO, PLRU, and LRU:

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7

FIFO vs LRU 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
LRU vs PLRU 1, 0 � 2, 1 � � � 5, 4

PLRU vs LRU 1, 0 � ⌥ � � � ⌥
FIFO vs PLRU 2, 1 � 4, 4 � � � 8, 8

PLRU vs FIFO 2, 1 � ⌥ � � � ⌥

Example: LRU(4) is 2-miss-competitive relative to PLRU(4) with constant 1.
PLRU(4) is not miss-competitive relative to LRU(4) at all.

Hit-competitiveness (ratios, constants) (k, c) relating FIFO, PLRU, and LRU:
Associativity: 2 3 4 5 6 7 8

LRU vs FIFO 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
FIFO vs LRU 1

2,
1
2

1
2, 1

1
2,

3
2

1
2, 2

1
2,

5
2

1
2, 3

1
2,

7
2

LRU vs PLRU 1, 0 � 1
2, 1 � � � 1

8,
15
8

PLRU vs LRU 1, 0 � 1
2, 1 � � � 1

4,
3
2

FIFO vs PLRU 1
2,

1
2 � 1

4,
5
4 � � � 1

11,
19
11

PLRU vs FIFO 0, 0 � 0, 0 � � � 0, 0

Generalizations to arbitrary k
Previously unknown relations:
• PLRU(k) is 1-competitive relative to LRU(1 + log2k).
• FIFO(k) is 1

2-hit-competitive relative to LRU(k), whereas
• LRU(k) is not l-hit-competitive relative to FIFO(k) for any l, but
• LRU(2k � 1) is 1-competitive relative to FIFO(k) with constant 0 for all k
�⇧ yields first may-analysis for FIFO,

• PLRU(k) is not l-miss-competitive relative to LRU(k) for k ⇤ 4 and any l.
=⌃ PLRU(k) is not l-miss-competitive (in the classical sense) for k ⇤ 4.

Reference: Jan Reineke and Daniel Grund: Relative Competitive Analysis of
Cache Replacement Policies. In ACM SIGPLAN/SIGBED 2008 Conference on
Languages, Compilers, and Tools for Embedded Systems – LCTES 2008

Contact information:
http://rw4.cs.uni-sb.de/
{reineke|grund}@cs.uni-sb.de

Supported by the

Relative Competitiveness of Cache Replacement Policies
Jan Reineke Daniel Grund

Saarland University

Introduction
In order to fulfill stringent performance requirements, caches are now also
used in hard real-time systems. In such systems, upper and lower bounds on
the execution times of a task have to be computed. To obtain tight bounds,
timing analyses must take into account the cache architecture. However,
developing cache analyses – analyses that determine whether a memory
access is a hit or a miss – is a difficult problem for some cache architectures.

Goal
Determine safe bounds on the number of cache hits and misses by a task T
under FIFO(k), PLRU(l), or any another replacement policy.

Approach

1. Determine competitiveness of the desired policy P relative to policy Q.

mP ⇥ k · mQ + c mQ(T) = mP(T)

2. Compute performance prediction of task T for policy Q by cache analysis.

mP ⇥ k · mQ + c mQ(T) = mP(T)

3. Calculate upper bounds on the number of misses for P using the cache
analysis results for Q and the competitiveness results of P relative to Q.

mP ⇥ k · mQ + c mQ(T) = mP(T)

Relative Competitiveness
Competitiveness (Sleator and Tarjan): worst-case performance of an online
policy relative to the optimal offline policy.
Relative competitiveness: worst-case performance of an online policy relative
to another online policy.

Let mP (q, s) be the number of misses incurred by policy P , starting in cache-set
state q, processing memory access sequence s.
Definition 1 (Relative Miss-Competitiveness).
Policy P is k-miss-competitive relative to policy Q with additive constant c, if

mP (p, s) ⇥ k · mQ(q, s) + c

for all access sequences s � S and comp. cache-set states p � CP, q � CQ.

“Policy P will incur at most k times the number of misses of policy Q plus
constant c on any access sequence.”

Hit-competitiveness is defined analogously.
The competitive miss ratio cm

P,Q is the smallest k such that P is k-miss-
competitive relative to Q with some additive constant.

Computing Competitive Ratios
P and Q induce a transition system that captures how the two policies act
relative to each other, processing the same memory accesses:

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd]FIFO, [abcd]LRU
e

(m, m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m, m)

c

(h, m)
[deab]FIFO, [deab]LRU

d

(m, h)

Legend
[abcd]FIFO Cache-set state

· ·d Memory access

(h, m), . . . Misses in pairs of
cache-set states

LRU
MRU

last-in
first-in

Figure 1: Small part of the transition system in the computation of competitive-
ness results for FIFO(4) vs. LRU(4).

Competitive ratio = maximum ratio of misses in policy P relative to the number
of misses in policy Q in transition system.

Quotient Transition System
Problem: The induced transition system is ⌥ large.
Goal : Construct finite transition system with same properties.
Observation: Only the relative positions of elements matter:

[abc]LRU, [b e]FIFO [fgl]LRU, [g m]FIFO⌅

[cab]LRU, [cb]FIFO

(h, m)c

[lfg]LRU, [lg]FIFO

(h, m)l

⌅

Two pairs of cache-set states are ⌅-equivalent, if they can be transformed into
each other by a renaming of their contents.
Merging equivalent pairs of cache-set states yields a finite quotient transition
system that retains competitivenss properties:

[abcd]FIFO, [abcd]LRU

(h, h)

(m, m)

[abcd]FIFO, [dabc]LRU

(h, h)

[eabc]FIFO, [edab]LRU

(m, m)

(m, h)

[eabc]FIFO, [ceda]LRU
(h, m)

Figure 2: ⌅-equivalent states are similarly colored in Figure 1. Merging equiv-
alent states yields the quotient structure depicted here.

Results
Miss-competitiveness (ratios, constants) (k, c) relating FIFO, PLRU, and LRU:

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7

FIFO vs LRU 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
LRU vs PLRU 1, 0 � 2, 1 � � � 5, 4

PLRU vs LRU 1, 0 � ⌥ � � � ⌥
FIFO vs PLRU 2, 1 � 4, 4 � � � 8, 8

PLRU vs FIFO 2, 1 � ⌥ � � � ⌥

Example: LRU(4) is 2-miss-competitive relative to PLRU(4) with constant 1.
PLRU(4) is not miss-competitive relative to LRU(4) at all.

Hit-competitiveness (ratios, constants) (k, c) relating FIFO, PLRU, and LRU:
Associativity: 2 3 4 5 6 7 8

LRU vs FIFO 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
FIFO vs LRU 1

2,
1
2

1
2, 1

1
2,

3
2

1
2, 2

1
2,

5
2

1
2, 3

1
2,

7
2

LRU vs PLRU 1, 0 � 1
2, 1 � � � 1

8,
15
8

PLRU vs LRU 1, 0 � 1
2, 1 � � � 1

4,
3
2

FIFO vs PLRU 1
2,

1
2 � 1

4,
5
4 � � � 1

11,
19
11

PLRU vs FIFO 0, 0 � 0, 0 � � � 0, 0

Generalizations to arbitrary k
Previously unknown relations:
• PLRU(k) is 1-competitive relative to LRU(1 + log2k).
• FIFO(k) is 1

2-hit-competitive relative to LRU(k), whereas
• LRU(k) is not l-hit-competitive relative to FIFO(k) for any l, but
• LRU(2k � 1) is 1-competitive relative to FIFO(k) with constant 0 for all k
�⇧ yields first may-analysis for FIFO,

• PLRU(k) is not l-miss-competitive relative to LRU(k) for k ⇤ 4 and any l.
=⌃ PLRU(k) is not l-miss-competitive (in the classical sense) for k ⇤ 4.

Reference: Jan Reineke and Daniel Grund: Relative Competitive Analysis of
Cache Replacement Policies. In ACM SIGPLAN/SIGBED 2008 Conference on
Languages, Compilers, and Tools for Embedded Systems – LCTES 2008

Contact information:
http://rw4.cs.uni-sb.de/
{reineke|grund}@cs.uni-sb.de

Supported by the

Automatic Computation

Finite
Quotient
System

Results and GeneralizationsRelative Competitiveness

Problem:
Cache Analyses for LRU only

Idea:
Transfer guarantees for LRU to FIFO, PLRU, etc.

Solution:
Relative Competitiveness

Definition – Relative Miss-Competitiveness

Notation
mP(p, s) = number of misses that policy P incurs on

access sequence s ⇤ M� starting in state p ⇤ CP

Definition (Relative miss competitiveness)
Policy P is (k , c)-miss-competitive relative to policy Q if

mP(p, s) � k · mQ(q, s) + c

for all access sequences s ⇤ M� and cache-set states p ⇤ CP, q ⇤ CQ

that are compatible p ⇥ q.

Definition (Competitive miss ratio of P relative to Q)
The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Jan Reineke Caches in WCET Analysis November 7th , 2008 16 / 33

Generalizations
Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�⇥ LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 , k�1

2) hit-comp. rel. to LRU(k), whereas
LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k), and
LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).

�⇥ LRU-may-analysis can be used for FIFO and MRU
�⇥ optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis November 7th , 2008 27 / 33

6.4. RESULTS

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
LRU vs PLRU 1, 0 � 2, 1 � � � 5, 4
LRU vs MRU 1, 0 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6

FIFO vs LRU 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6 8, 7
FIFO vs PLRU 2, 1 � 4, 4 � � � 8, 8
FIFO vs MRU 2, 1 3, 3 4, 4 5, 5 6, 6 MEM MEM

PLRU vs LRU 1, 0 � ⇥ � � � ⇥
PLRU vs FIFO 2, 1 � ⇥ � � � ⇥
PLRU vs MRU 1, 0 � ⇥ � � � MEM
MRU vs LRU 1, 0 2, 1 3, 2 4, 3 5, 4 6, 5 7, 6
MRU vs FIFO 2, 1 4, 3 6, 5 8, 7 10, 9 MEM MEM
MRU vs PLRU 1, 0 � 4, 3 � � � MEM

Figure 6.6: Miss-Competitiveness ratios k and additive constants c relating FIFO,
PLRU, LRU, and MRU at the same associativity. PLRU is only defined
for powers of two. As an example of how this should be read, LRU(4) is
2-miss-competitive relative to PLRU(4) with additive constant 1, whereas
PLRU(4) is not miss-competitive relative to LRU(4) at all. ⇥ indicates that
there is no k such that the policy on the left is k-miss-competitive relative
to the policy on the right. MEM indicates that the computation required
more than 1.5GB of heap space.

Associativity: 2 3 4 5 6 7 8
LRU vs FIFO 0 0 0 0 0 0 0
LRU vs PLRU 1, 0 � 1

2 , 1 � � � 1
8 ,

15
8

LRU vs MRU 1, 0 0 0 0 0 0 0
FIFO vs LRU 1

2 ,
1
2

1
2 , 1

1
2 ,

3
2

1
2 , 2

1
2 ,

5
2

1
2 , 3

1
2 ,

7
2

FIFO vs PLRU 1
2 ,

1
2 � 1

4 ,
5
4 � � � 1

11 ,
19
11

FIFO vs MRU 1
2 ,�

1
2 0 0 0 0 MEM MEM

PLRU vs LRU 1, 0 � 1
2 , 1 � � � 1

4 ,
3
2

PLRU vs FIFO 0 � 0 � � � 0
PLRU vs MRU 1, 0 � 0 � � � MEM
MRU vs LRU 1, 0 0 0 0 0 0 0
MRU vs FIFO 0 0 0 0 0 MEM MEM
MRU vs PLRU 1, 0 � 0 � � � MEM

Figure 6.7: Hit-Competitiveness ratios k and subtractive constants c relating FIFO,
PLRU, LRU, and MRU at the same levels of associativity. Again, MEM
indicates that the computation required more than 1.5GB.

103

Measurement-based
WCET AnalysisMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Jan Reineke Caches in WCET Analysis November 7th , 2008 29 / 33

Influence of Initial Cache State

execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)
Policy P is (k , c)-miss-sensitive if

mP(p, s) � k · mP(p⇥, s) + c

for all access sequences s ⇥ M� and cache-set states p, p⇥ ⇥ CP.

Jan Reineke Caches in WCET Analysis November 7th , 2008 30 / 33

1. Measure execution times
 of basic blocks

2. Combine measurements
 for basic blocks to obtain
 estimate of WCET

Influence of Initial State

How wrong can this get?

Sensitivity Results

Policy 2 3 4 5 6 7 8
LRU 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

FIFO 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8
PLRU 1, 2 � ⇥ � � � ⇥
MRU 1, 2 3, 4 5, 6 7, 8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.

Jan Reineke Caches in WCET Analysis November 7th , 2008 31 / 33

Sensitivity Results

LRU is optimal:
minimal influence of initial state

FIFO, MRU, PLRU:
great influence of initial state

Predictability Limits on the Precision of Cache Analysis

Competitiveness Cache Analyses for FIFO, PLRU, etc.

Sensitivity Caches in Measurement-based WCET Analysis

References:
Jan Reineke. Caches in WCET Analysis. PhD thesis, Universität des Saarlandes, Saarbrücken, November 2008.
Jan Reineke and Daniel Grund: Relative competitive analysis of cache replacement policies. In LCTES 2008.
Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm:

Timing predictability of cache replacement policies. Real-Time Systems, 37(2):99-122, November 2007.

[Courtesy of J. Reineke]

τ1	

τ2	

τ3	

τ1	

τ2	

time

Indefinite delays due to
corrupted cache states

