

Background

- The complexity and the size of automotive control systems are increasing.
- Such systems have hard real-time constraints, thus highperformance-yet-predictable control systems are needed.

Problem

- Current control system design in practice relies on testing, even though the correctness can only be guaranteed by static analysis at design time, not by testing.
- This is because of the unacceptable amount of pessimism in the analysis results.

Caches: The main culprit

- HW uncertainties are becoming more significant due to everincreasing application sizes and system complexity.
- Caches are the main source that increases the uncertainties.

In order to fulfill stringent performance requirements, caches are now also used in hard real-time systems. In such systems, upper and lower bounds on the execution times of a task have to be computed. To obtain tight bounds, timing analyses *must* take into account the cache architecture. However, developing cache analyses – analyses that determine whether a memory access is a hit or a miss – is a *difficult problem* for some cache architectures.

Goal

Determine safe bounds on the number of cache hits and misses by a task Tunder FIFO(k), PLRU(l), or any another replacement policy.

Approach

 $\mathbf{m}_{\mathbf{P}} \leq \mathbf{k} \cdot \mathbf{m}_{\mathbf{Q}} + \mathbf{c}$

 $\mathbf{m}_{\mathbf{P}} \leq \mathbf{k} \cdot \mathbf{m}_{\mathbf{Q}} + \mathbf{c}$

Relative Competitiveness

Competitiveness (Sleator and Tarjan): worst-case performance of an online policy relative to the optimal offline policy. Relative competitive metse: strates case performance of an online policy relative to another online policy.

т. ́ ``	e the number of
<u> </u>	ceina momory a
state q , proces	
Definition 1	τ ₂
Policy P is k .	-miss-competitiv

Scaling the Real-time Capabilities of

Relative Competitiveness of Cache Replacement Policies

Jan Reineke **Daniel Grund** Saarland University

Introduction

1. Determine competitiveness of the desired policy P relative to policy Q.

2. Compute performance prediction of task T for policy Q by cache analysis.

3. Calculate upper bounds on the number of misses for P using the cache analysis results for Q and the competitiveness results of P relative to Q.

Problem: The induced transition system is ∞ large. Goal: Construct finite transition system with same properties. Observation: Only the relative positions of elements matter:

each other by a renaming of their contents.

system that retains competitivenss properties:

alent states yields the quotient structure depicted here.

	Results								
Miss-competitiveness (ratios, constants) (k, c) relating FIF									
	Associativity:	2	3	4	5	6			
	LRU vs FIFO	2, 1	3, 2	4,3	5, 4	6, 5	7		
	FIFO vs LRU	2, 1	3, 2	4, 3	5, 4	6, 5	7		
	LRU vs PLRU	1, 0	_	2, 1	_	_	-		
	PLRU vs LRU	1, 0	_	∞	_	_	-		
	FIFO vs PLRU	2, 1	_	4, 4	_	_	-		
	PLRU vs FIFO	2, 1	—	∞	—	—	-		
	1								

7, 6	8,7	
_	5, 4	
	∞	
	0 0	