
Performance Optimization on Massively Parallel Platforms
with Heterogeneous Memory Architectures

Bo Wu
Colorado School of Mines

‣Massively parallel platforms require heterogeneous memory
architectures for optimal performance

‣ Nvidia GPUs have shared memory, device memory, and can directly access
host memory

‣ Intel Knights Landing processors have on-package high-bandwidth memory

‣The different memory modules have their unique performance
characteristics
‣Programmers have to fine-tune the applications to match the massive

parallelism with the memory heterogeneity

Motivation

bwu@mines.edu

Case Study

‣The different memory modules have quite different constraints, such as
capacity, latency, throughput, etc.
‣Real-world applications show dynamic behaviors and input sensitivity
‣Co-running applications contend to use the low-latency or high-

bandwidth memory modules

Challenges

‣Understand the interplay between program behaviors and different
placement strategies
‣Understand the trade-off between data migration and data placement
‣Design a compiler and/or runtime optimization framework to

automatically and transparently optimize performance
‣Demonstrate the performance benefits on real-world complex

applications in various scenarios

Goals

‣The input graph is too large to fit in the device memory
‣The graph applications typically need many super steps, resulting in

redundant data transfers between the host memory and the device
memory
‣Existing approaches cannot efficiently use shared memory due to the

irregularity

Processing very large graphs on one single GPU

Our idea: vertex renaming

Enables efficient accesses to
shared memory

for source vertices

Enables quickly activating
partitions to transfer

in the next super step

The framework

Preliminary results

mailto:bwu@mines.edu

