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Boosting Resilience Efficiency in the Face of Frequent, Clustered, and Diverse Faults

Gem5-based Integrated Fault tolerant Framework

Adaptive Fault Recovery Adaptive Fault Detection and Checkpoint Application-specific Checkpoint Frequency

qOptimal Checkpoint position

Fault detection overhead

Conclusions:
ü Full fault coverage
üReduce 88% of the comparison overhead
üMask over 38% of the total injected faults.

qOptimal checkpointed set

Ratio of various types of faults
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Fault Classification Overhead Reduction

Conclusion:
üProvide fault coverage
üRequire 16KB of storage

üApplicable to 60% of faults
ü72% recovery overhead reduction

Re-exec.Set: 3,5 Re-exec.Set: 1,2,3,5 

ü Classify Instructions in each scenario:

ü Convert original code to pseudo-
SSA code using free registers.

r0 r2 r0 r1 r2 r3

Faulty: Valid and Faulty
Clean: Valid and Clean
Ambiguous: overwritten 

qAmbiguity Set Minimizer (ASM)
Reg. Stat.: r0 r1 r2 r4 sp

Reg. Stat.:

𝑅4,--5-% = 𝑎𝑙𝑙𝑟𝑒𝑔𝑠 − (𝑅=>-2(?) ∪ 𝑅A-B(?))
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qMinimum Recovery Set Selector (MRSS)

Conclusion:
ü Static model: <6% deviation from 

actual optimal values
ü Dynamic method is effective when 

fault rate is unknown a priori
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Why?
üMinimize checkpointing and detection overhead and prevent 

unnecessary rollbacks

Why?
üFault rate is unpredictable in most cases.
üThe higher the fault rate, the higher the 

checkpoint frequency 
üOptimal checkpoint frequency is

application specific

Why?
üIn face of elevated fault rate, systems need to recover faster
üTraditional recovery: overhead independent of the fault scenario

Overall overhead

Re-exec.Set: 3,5,6 
r0Ckpntd Set sp
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Re-exec.Set: 1-6 

Instruction Seq.
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qStatic Model

qDynamic Heuristics
üRun-time fault rate = number of instructions 

executed between two consecutive faults.
üAdaptation: Using the approximation of S
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Optimal ckpnt set: r2,r3,r4,r5
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