
Chengmo Yang
Department of Electrical and Computer Engineering, University of Delaware

Boosting Resilience Efficiency in the Face of Frequent, Clustered, and Diverse Faults

Gem5-based Integrated Fault tolerant Framework

Adaptive Fault Recovery Adaptive Fault Detection and Checkpoint Application-specific Checkpoint Frequency

qOptimal Checkpoint position

Fault detection overhead

Conclusions:
ü Full fault coverage
üReduce 88% of the comparison overhead
üMask over 38% of the total injected faults.

qOptimal checkpointed set

Ratio of various types of faults

𝑅"#$%(') = 𝑅"#$%(') ∩ 𝑅+,'%-(.//$	1/23)

Fault Classification Overhead Reduction

Conclusion:
üProvide fault coverage
üRequire 16KB of storage

üApplicable to 60% of faults
ü72% recovery overhead reduction

Re-exec.Set: 3,5 Re-exec.Set: 1,2,3,5 

ü Classify Instructions in each scenario:

ü Convert original code to pseudo-
SSA code using free registers.

r0 r2 r0 r1 r2 r3

Faulty: Valid and Faulty
Clean: Valid and Clean
Ambiguous: overwritten 

qAmbiguity Set Minimizer (ASM)
Reg. Stat.: r0 r1 r2 r4 sp

Reg. Stat.:

𝑅4,--5-% = 𝑎𝑙𝑙𝑟𝑒𝑔𝑠 − (𝑅=>-2(?) ∪ 𝑅A-B(?))
2

1

3

5

4

r0

r3 r2

r12

1

3

5

4

r0

r0
r2

r0

Free Regs

qMinimum Recovery Set Selector (MRSS)

Conclusion:
ü Static model: <6% deviation from 

actual optimal values
ü Dynamic method is effective when 

fault rate is unknown a priori

Optimal checkpoint intervals, analytical 
v.s experimental

Evaluation of dynamic 
heuristics (overall overhead)

Minimum Recovery Set 
Selecter

Ambiguity Set 
Minimizer 

System Status

Register Set status

Fault Scenario1 Re-exec. Set1
Fault Scenario2 Re-exec. Set2
…………… ………..

PLAN

Profiling

Predicted
fault rate

Run-time 
fault rate

Static 
model

Dynamic 
Heuristics

Adapted ckpnt. frequency

Static optimal 
ckpnt. frequency

Proposed Framework
Compile-time Run-time 

Optimal chkpnt
set

Optimal chkpnt
position

checkpoint
Optimal 

Checkpoints

Why?
üMinimize checkpointing and detection overhead and prevent 

unnecessary rollbacks

Why?
üFault rate is unpredictable in most cases.
üThe higher the fault rate, the higher the 

checkpoint frequency 
üOptimal checkpoint frequency is

application specific

Why?
üIn face of elevated fault rate, systems need to recover faster
üTraditional recovery: overhead independent of the fault scenario

Overall overhead

Re-exec.Set: 3,5,6 
r0Ckpntd Set sp

1 2

3

5
4

7

8

r1

r0

r0

r2

r4

r1

r0
r4

r2

9
CPSR

Fault

3
4

6

5

Dependence Graph

Re-exec.Set: 1-6 

Instruction Seq.

Inst 1
Inst 2
Inst 3
Inst 4
Inst 5
Inst 6
Inst 7
Inst 8
Inst 9

T1

T2

qStatic Model

qDynamic Heuristics
üRun-time fault rate = number of instructions 

executed between two consecutive faults.
üAdaptation: Using the approximation of S

𝑡D-+
𝑡>%E%'"

=
∆𝐹𝑎𝑢𝑙𝑡E""
∆𝐹𝑎𝑢𝑙𝑡>%E%'"

�

S

𝑜𝑝𝑡𝑖𝑚𝑎𝑙	𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 	𝛼		.
1
𝜆

�

Optimal ckpnt set: r2,r3,r4,r5

Proposed Framework
Compile-time Run-time 

Proposed Framework
Compile-time Run-time 

Minimum 
detection& recovery

overhead?

Get next candidate

Smallest 
ckpnt set?

No

Get next point in the loop

Optimal checkpoint

No

Yes

No

Mark as candidate

Unconditionally
Executed?

Yes Yes

Fault ScenarioN Re-exec. SetN

Adder

Counter

Register

Right shift

Instruction count 
since last fault

Accumulative fault interval

This work is supported by 
NSF grant #1253733

Publications
1) F. S. Hosseini, P. Fotouhi, C. Yang, and G. R. Gao. “Leveraging compiler optimizations to reduce runtime fault recovery overhead,” DAC, 2017.
2) H. A. Khouzani and C. Yang, "Towards a Scalable and Write-Free Multi-version Checkpointing Scheme in Solid State Drives," DSN, 2016.
3) C. Liu and C. Yang. “Secure and Durable (SEDURA): An Integrated Encryption and Wear-leveling Framework for PCM-based Main Memory,” LCTES, 2015.
4) C. Yang and M. Ruiz Varela, "Qualifying non-volatile register files for embedded systems through compiler-directed write minimization and balancing," VLSI-SoC, 2015.
5) L. A. Rozo Duque and C. Yang, “Improving MPSoC reliability through adapting runtime task schedule based on time-correlated fault behavior,” DATE, 2015.
6) L. A. Rozo Duque and C. Yang, “Guiding fault-driven adaption in multicore systems through a reliability-aware static task schedule," ASPDAC, 2015.
7) C. Liu and C. Yang, "Improving multi-level PCM reliability through age-aware reading and writing strategies," ICCD, 2014.
8) H. Chen and C. Yang. “Fault detection and recovery efficiency co-optimization through compile-time analysis and runtime adaptation,” CASES, 2013.
9) H. Chen and C. Yang. “Boosting efficiency of fault detection and recovery through application-specific comparison and checkpointing,” LCTES, 2013.


