
Background and Motivation
Issues in MapReduce: low cluster utilization,
suboptimal scalability and poor multi-tenant support.

The worker based resource allocation in MapReduce
makes it hard to fully utilize cluster resource .

Skew caused by uneven data distribution or non-
uniform data processing cost creates stragglers.

Challenges in fully unlocking cloud potential.

• Hidden hardware capabilities and performance
discrepancies

• Stragglers slow down the entire jobs

Results: We developed techniques that successfully
detect stragglers, resize node capacity and achieve load
balancing in virtual cluster. As a result, both job
performance and cluster utilization are improved

Future work: We are aiming to apply light-weight
virtualization in Big Data analytics.

Introduction
Moving MapReduce into the cloud is believed to
benefit from rapid deployment, high availability, on-
demand elasticity and secure multi-tenancy.

However, simple migration does not ensure that the
flexibility, efficiency and elasticity in the cloud could
be fully exploited.

The sematic gap between the MapReduce runtime and
the virtualization layer, and the lack of MapReduce-
aware cloud management impede the wide adoption of
Big Data Cloud.

 We propose para-virtualized MapReduce (para-
MR), an enhancement of MapReduce to actively
adapt job to the cloud dynamics, including
interference and hardware heterogeneity.

 We propose MapReduce cloud (MR-cloud), a
collection of cloud optimizations for MapReduce
workloads to truly realize the flexibility and
elasticity of virtualization.

Moving MapReduce into the Cloud: Flexibility, Efficiency, and Elasticity
PI Xiaobo Zhou* and CoPI Jia Rao

Approaches: FlexSlot
FlexSlot: Moving Hadoop into the Cloud with
Flexible Slot Management (SC 2014)

Preliminary Study:

Category the reasons cause stragglers:

•Disk I/O Bottleneck due to Data Skew

•CPU Starvation due to Inaccurate Demand
Estimation

Design:

1.Identifying stragglers: continuously monitors two
task-specific metrics during task execution: progress
rate and input processing speed

2.Proactively changing the size of slots: If a
straggler’s performance is bottlenecked by I/O
operations, it proactively terminates the straggler
and restarts it with a larger slot size.

3.Adaptively adjusting the number of slots: bridges
the semantic gap between Hadoop tasks and the
demand-based resource allocation by adaptively
changing the number of slots on Hadoop nodes.

Evaluation:

Conclusion:

1. Significant reduction in job completion time.

2.Significant Improvement in cluster resource
utilization.

Approaches: FlexMap
Addressing Performance Heterogeneity in MapReduce
Clusters with Elastic Tasks (IPDPS 2017)

Preliminary Study:

•Load balancing should be performed at fine
granularity to mitigate performance heterogeneity but
tasks should be run at coarse granularity to avoid
execution overhead.

•The optimal task size depends on the interplay
between the execution overhead, such as container and
JVM startup time, the computation needed by a
particular job, and the degree of performance
heterogeneity.

Design:

Heterogeneous-aware task sizing:

•Vertical scaling: fast scaling to jump small block size
causing inefficiency.

•Horizontal scaling: adjust map size horizontally
across machines depends on their relative speed.

Evaluation:

Conclusion:

Significantly improve job performance in
heterogeneous cluster.

Approaches: BIG-C
Preemptive, Low Latency Datacenter Scheduling via
Lightweight Virtualization (USENIX ATC 2017)

Preliminary Study:

•Data centers are dominated by short jobs and
eviction are frequent to attain scheduling policy.

•Default killing based preemption causes significant
overhead, especially long running workloads.

Design:

Task suspension: deprive CPU resource and save
task context onto disk while keeping task
heartbeat(e.g., set CPU usage to 1% and memory
usage to 64MB)

Task resumption: re-activating the container by
restoring its deprived resources.

Immediate task preemption: immediately deprive
both CPU and memory resource for a task.

Graceful task preemption: Reclaim a task’s resource
at pre-defined step based on preemptive fair share
scheduling.

Evaluation:

Conclusion:

1. Reduce preemption overhead to an acceptable
level..

2. Significant Improvement both in cluster resource
utilization and job performance.

* The University of Colorado, Colorado Springs The University of Texas, Arlington

Virtualization causes task performance heterogeneity

 Multi-block execution
 Late task binding
 Monitoring node speed
 Task sizing

MapReduce design and FlexSlot design based on MapReduce

Task runtime vs. iowattime Task runtime vs. cputime

CDF of Task completion time Normalized job completion time

Normalized CPU utilization Normalized memory utilization

Improve job completion time on heterogeneous clusters

Dynamic task sizing for fast and slow nodes

Large scale results

Task runtime probability Job runtime & efficiency vs. bock size
Data center trace analysis Overhead of default killing preemption

 Throttle CPU
 Shrink memory
 Resume memory
 Resume CPU

Micro-benchmark performance for Spark workloads

Google trace results

NSF CNS-1422119

	Slide Number 1

