
Location, Location, Location:
Support for Geo-Centric Applications

PIs: Abhishek Chandra and Jon Weissman
Department of Computer Science and Engineering

University of Minnesota

NSF Award: CNS-1619254

(Start: Oct 2016)

1

Motivation

• Geo-distributed mobile devices, sensors,
wearable devices

Geo-centric Applications

• Location-dependent: User/data-driven

• Examples:

– JIT image analysis

– On-demand video processing

Traffic Analysis

 Video Surveillance

Event Monitoring

?

Geo-centric Applications:
Characteristics

• Have diverse resource needs:

– Compute, storage, data, sensing

• Desire locality to:

– User: For low latency

– Data: For efficient processing

• Limitations of traditional approaches:

– Centralized cloud: High latency, b/w constraint

– On-device: Limited compute, storage, battery life

Solution: Use Edge Resources

• Pre-deployed or user-provided

– Provide compute, storage, sensing
capabilities

• Benefits:

– Good connectivity

– Large number of users, sensors

– Powerful, underutilized resources

Challenges

• Mobility: Users or sensors may move

• Unpredictability: Availability and demand of
data/resources may vary over time

• Failures: Resources or network may fail

• Questions:

– How to find desired resources on-demand?

– How can diverse applications easily use them?

Our Approach

Application 1 Application 2

Resource Cloud
Resource
Container

Resource Cloud

• Dynamic collection of available resources

• Location-aware Pub-Sub model:

– Resource providers publish resources

– Applications consume resources

Resource Cloud

Resource Container

• Encapsulates resources for an
application

• Simple, general API

– E.g.: put/get for storage, collect for
sensors

• Policy-driven runtime sytem

– Event-based execution

Application

Resource
Container

Talk Outline

Motivation

Approach

• Prior Work

• Ongoing Work

• Conclusion

Prior Work:
Nebula Distributed Edge Cloud

Nebula: Distributed Edge Cloud

• Exploits volunteer edge computing and storage

• Supports distributed data-intensive applications

Nebula Architecture

Locality Awareness

• Challenge: Network may be bottleneck

• Locality-aware storage:

– Data nodes ordered by their locality (b/w, latency,
etc.) w.r.t. client

• Locality-aware scheduling

– Schedule task on a node based on both data
transfer and computation time

0

1000

2000

3000

4000

5000

6000

7000

8000

CSCI CSDI NEBULA CSCI CSDI NEBULA

R
u

n
 T

im
e

(s
)

MAP REDUCE

500MB

1GB

Benefit of Locality-awareness

Nebula significantly improves
performance via locality-awareness

Seteup: PlanetLab; MapReduce Wordcount/Inverted Index

Prior Work:
Wiera Geo-distributed Storage System

• Middleware that supports:

– Multi-tiered, multi- cloud
storage instances

– Rich array of data
management policies

– Adaptive to network and
workload dynamics

Wiera

Storage
Instance

Storage
Instance

Storage
Instance

Wiera Storage Instance

• Consists of:

– DC Locations, Storage tiers

– Storage/Data management policies

• Policies defined using:

– Events: Action, timer, and threshold

– Responses: Can be application or storage layer specific

• E.g.: store, storeOnce, compress, encrypt

Application

Wiera Local
Storage Instance

Example Wiera Policy

ACTION EVENT

TIMER EVENT

• Desired: Low Latency with periodic writeback

Initial Instance
Configuration

Wiera

Performance Optimization

0

20

40

60

80

100

120

140

160

180

200

1 10 20 30

Th
ro

u
gh

p
u

t
(T

P
S)

Workload Skew (% Data Fetched 80% of the Time)

Tiera MemcachedReplicated Inst.

Tiera MemcachedEBS Inst.

MySQL On EBS

Wiera enables significantly better performance
without application modifications

Setup: Amazon AWS; Unmodified MySQL

Wiera MemcachedReplicated Instance

Wiera MemcachedEBS Instance

MySQL EBS

Ongoing Work: Constellation

• Edge-based resource framework for IoT devices

• Supports:

– Location-aware resource discovery

– Device-independent API

– Cross-application optimizations

Preliminary Results

Photon-based temperature sensor, Google Pixel edge device

Constellation achieves low latency with minimal
overhead

Ongoing Work

• Support for diverse resource types

– Compute, storage, sensors, data

• Incentivization

– Economic models for resource providers

• Richer policy specification and
optimization

– For diverse applications and devices

Concluding Remarks

• Geo-distributed user devices and sensors

• Geo-centric applications:
– User/data dependent

• Utilizing location-dependent edge resources via:
– Resource cloud

– Resource container

• Acknowledgments:
– Students: Albert Jonathan, Zach Leidall, Kwangsung

Oh, Ajay Raghavan, Mathew Ryden

– NSF

Thanks!

http://www.cs.umn.edu/~chandra

