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Multicores & Networks-on-Chip

 With increasing number of heterogeneous cores, 

communication-centric design paradigm is becoming critical 

(Networks-on-Chip)

 Energy consumed for communication is increasing

 Traffic patterns exhibit temporal and spatial fluctuations

[1] http://www.tilera.com/products/processors/TILE-Gx_Family [2] http://www.intel.com/pressroom/kits/teraflops/ [3] http://www.nvidia.com/object/nvidia-kepler.html

TILE-Gx72[1] 80-core Intel TeraFlops[2] 2880-core KEPLER (Nvidia)[3]



 Interconnect energy is scaling slower than 

compute energy as technology and number 

of cores continue to scale

 Reduced bandwidth/throughput due to 

voltage/frequency scaling
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Energy & Bandwidth Limitations

 Potential Solutions:

Photonics, 3D Stacking, Wireless

Source: S. Borkar, Exascale Computing- a fact or fiction?, Intel, 2013 

http://www.ipdps.org/ipdps2013/SBorkar_IPDPS_May_2013.pdf

 Potential Solution:

Dynamic Bandwidth Reconfiguration

 Traffic patterns exhibit temporal and spatial fluctuations
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Why Photonics?

 Photonics provides

 Low energy (7.9 fJ/bit)

 Small footprint (~2.5 μm)

 High bandwidth (~40 Gbps)

 Low latency (10.45 ps/mm)

 CMOS compatible

1. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, K. Bergman, “40-Gb/s DPSK Data Transmission Through a Silicon Microring Switch," IEEE Photonics 

Technology Letters 24.

2. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235-18242 (2010)
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Photonic Link
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• Compensates for a variety of light losses along its path

Trimming power

• Microring resonators are sensitive to temperature variations.

• They require additional trimming power to maintain their 

resonant wavelength
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Static Power Challenge
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 The laser source and on-chip micro-ring resonators trimming power 

represent the majority of network power 

More than 

60% of total 

power budget!

(routing, O/E, E/O conversion)

 Potential Solution:

Dynamic Power Scaling



PI Meeting TEAL 8

 Introduction & Motivation

 SHARP

 Architecture & Implementation

 Dynamic Bandwidth & Power Scaling

 Machine Learning

 Performance Analysis

 Other Research Accomplishments

Outline



PI-Meeting TEAL 9

 Key goal
 Provide scalable bandwidth and save static optical power while 

meeting performance constraints

 Hardware Design
 Ring-based photonic crossbar that combines both CPU and 

GPU cores together into a cluster

 Propose R-SWMR to reduce power consumption

 Novelty
 Fine-grain dynamic bandwidth allocation without global 

coordination 

 Refine the bandwidth and power scaling using machine learning 
algorithms

 Main result
 Static power savings more than 45% - 65%, with 0.3% -14%

penalty on throughput 

SHARP: Shared Heterogeneous Architecture for 

Reconfigurable Photonic Network-on-Chip
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SHARP Architecture: Checkerboard Pattern
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• Dedicated crossbar channel –

local control & coordination

• Broadcast optical signal –

consumes more power
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Inter-Router Communication

Single Write Multiple Reader (SWMR) Multiple Write Single Reader (MWSR)

• Shared crossbar channel –

global control & coordination

• Point-to-point optical signal –

consumes less power

• Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang and A. Choudhary, “Firefly: Illuminating Future Network-on-Chip with Nanophotonics”, Proc. 

International Symposium on Computer Architecture, 2009, pp. 429- 440
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Router Microarchitecture

Router Pipeline



• Predict buffer occupancy

• Re-allocate bandwidth 

between CPU and GPU 

cores

• Prioritize CPU requests 

over GPU requests

• Make decisions locally 

using R-SWMR
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Dynamic Bandwidth Scaling

𝛽𝑂𝑐𝑢𝑝(𝐶𝑃𝑈) =
 𝑖=0

𝑗−1
𝐵𝑢𝑓𝑖 × 𝑎𝑖

𝑗

𝛽𝑂𝑐𝑢𝑝(𝐺𝑃𝑈) =
 𝑖=0

𝑘−1𝐵𝑢𝑓𝑖 × 𝑎𝑖

𝑘



• Power scaling by turning off 

select wavelengths (from 

64-48-32-16-8)

• On-chip laser with a 2ns 

turn-on delay has been 

proposed [1,2,3]

• Reservation windows set to 

500 and 2000 cycles
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Dynamic Power Scaling

[1] K. P. E. Kotelnikov, A. Katsnelson and I. Kudryashov, “Highpower single-mode ingaasp/inp laser diodes for pulsed operation,” Proceedings of SPIE, vol. 8277 

827715, pp. 1–6, 2012.

[2] M. Heck and J. Bowers, “Energy Efficient and Energy Proportional Optical Interconnects for Multi-core Processors: Driving the Need for On-chip Sources”, 

IEEE Journal of Selected Topics in Quantum Electronics 20(4)(2014), pp. 1-12.

[3] T. Wang, H. Liu, A. Lee, F. Pozzi and A. Seeds, “1.3-µm InAs/GaAs Quantum-dot Lasers Monolithically Grown on Si Substrates”, Optics Express 

19(12)(2011), pp. 11381-11386



• Why Machine learning?
– Machine learning uses a proactive technique instead 

of reactive

• The machine learning uses linear ridge 
regression with the following error function:

 𝐸 𝒘 =
1

2
 

𝑛=1

𝑁

{𝒘𝑇𝜙 𝑥𝑛 − 𝑡𝑛}
2 +

λ

2
𝒘 2

• 𝛽𝑇𝑜𝑡𝑎𝑙 gets replaced with the number of 
predicted packets injected into each router for 
the next reservation window
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Machine Learning for Power Scaling

[1] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. 
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 Architecture Specifications

 32-CPU (32KB L1 Instruction, 64KB L1 Data, 256KB L2 Cache)

 64-GPU (64KB L1 Instruction, 512KB L2 Cache)

 Traces collected using Multi2Sim on CPU Benchmarks (PARSEC 2.1 

and Splash-2) and GPU Benchmarks (OpenCL SDK)

 Networks-on-Chip Model

 Cycle-accurate simulator based on Netsim + Dsent for power analysis

 Compared against SHARP-Dyn variations and CMESH

 FCFS – First Come First Serve

 CoSeg – Core Segregation

 BanSp – Bandwidth Split

 Performance Analysis

 Analyzed throughput, energy/bit 

 Sensitivity to different wavelengths (16, 32, 64)

 Reconfiguration window sizing (500 and 2000 cycles)

Simulation Methodology
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Throughput Achieved (Dynamic Bandwidth Scaling)
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• SHARP-Dyn improves throughput 

by 34% over CMESH

• SHARP-Dyn improves throughput 

6-14% over other variations
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Energy per bit (Dynamic Bandwidth Scaling)
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• SHARP-Dyn saves 24% more power than CMESH architecture
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Machine Learning - Throughput
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Machine Learning – Power Analysis
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• Results indicated 13% improvement in 

throughput and 48% reduction in power 

consumption
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Laser Pooling 

 Share a pool of laser 
power between 
participating nodes that 
can be claimed on-
demand

 Dynamically scaling laser 
power and the pool of 
optical channels

 FCFS allocation policy

• Improve energy-delay product by 31%
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 Photonic interconnects can improve the performance/Watt
when compared to traditional electrical interconnects
 Wall-plug (coupling) efficiency of lasers

 Thermal stability and sensitivity

 As traffic exhibits temporal and spatial fluctuations, bandwidth 
reconfiguration can improve throughput

 Static optical power (laser, trimming power) is a significant 
portion of the total power consumption and power reduction 
techniques are essential

 Machine learning algorithms could potentially provide higher 
throughput and power savings

Conclusions



JOURNALS

• Matthew Kennedy and Avinash Kodi, “Laser Pooling: Static and Dynamic Laser Power Allocation for On-Chip Optical Interconnects,” Accepted to appear in 

IEEE/OSA Journal of Lightwave Technology (JLT), Special Issue on Optical Interconnects Conference, Sept/Oct 2017.

• Matthew Kennedy and Avinash Kodi, “CLAP-NET: Bandwidth Adaptive and Power Regulated Optical Crossbar Architecture,” Elsevier Journal of Parallel 

and Distributed Systems (JPDC), vol. 100, pp. 130-139, February 2017.

• Randy Morris, Evan Jolley and Avinash Kodi, “Extending the Performance and Energy-Efficiency of Nanophotonic Interconnects for Shared Memory 

Multicores,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 25, no. 1, pp. 83-93, January 2014.

• Randy Morris, Avinash Kodi, Ahmed Louri and Ralph Whaley, “3D Stacked Nanophotonic Architecture with Minimal Reconfiguration,” IEEE Transactions on 

Computers (TC), vol. 63, no. 1, pp. 243-255, January 2014.

CONFERENCES

• Ashif Sikder, Avinash Kodi and Ahmed Louri, “R-OWN: Reconfigurable Optical Wireless NoC Architectures,” 3rd ACM International Conference on Nanoscale 

Computing and Communication (NanoCom), New York, NY, September 28-29, 2016.

• Matthew Kennedy and Avinash Kodi, “On Demand Laser Power Allocation for On-Chip Optical Interconnects” Optical Interconnects Conference (OIC), San 

Diego, CA, May 9-11, 2016.

• Scott VanWinkle, Matthew Kennedy, Dominic DiTomaso and Avinash Kodi, “Energy Efficient Optical Network-on-Chip Architecture for Heterogeneous 

Multicores,” Optical Interconnects Conference (OIC), San Diego, CA, May 9-11, 2016.

• Matthew Kennedy and Avinash Kodi, “Cross-Chip: Low Power Processor-to-Memory Nanophotonic Interconnect Architecture,” Workshop on Energy-Efficient 

Networks of Computers (E2NC) held in conjunction with (IGSC’15), Las Vegas, NV, Dec 14-16, 2015.

• Ashif Sikdar, Matthew Kennedy, Avinash Kodi, Savas Kaya and Ahmed Louri, “OWN: Optical Wireless Network-on-Chips (NoCs) for Kilo-Core Architectures,” 

23rd Annual Symposium on High-Performance Interconnects (Hot Interconnects), Santa Clara, CA, August 26-28, 2015.

• Matthew Kennedy, Brian Neel and Avinash Kodi, “Runtime Power Reduction Techniques in On-Chip Photonic Interconnects,” 25th ACM’s Great Lakes VLSI 

Symposium (GLSVLSI), Pittsburgh, Pennsylvania, May 20-22, 2015.

• Matthew Kennedy and Avinash Kodi, “Design of Bandwidth Adaptive Nanophotonic Crossbars with Clockwise/Counter-Clockwise Optical Routing,” 28th

International Conference on VLSI Design, Bangalore, India, January 3-7, 2015.

STUDENTS GRADUATED

• Scott VanWinkle, “Shared Heterogeneous Architecture with Reconfigurable Photonic Network-on-Chips,” M.S. thesis, Ohio University, August 2017.

• Ashif Sikdar, “Emerging Technologies in On-Chip and Off-Chip Interconnection Network," M.S. thesis, Ohio University, August 2016.

• Matthew Kennedy, “Power-Efficient Nanophotonic Architectures for Intra- and Inter-Chip Communication," M.S. thesis, Ohio University, April 2016.

• Dominic DiTomaso, “Proactive and Reactive Fault Tolerant Network-on-Chips Architectures using Machine Learning,” Ph.D. Dissertation, August 2015.

• Brian Neel, “High-Performance Shared Memory Networking in Future Many-core Architectures Using Optical Interconnects," M.S. thesis, Ohio University, May 

2014.
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Journal and Conference Publications & Students Graduated



Questions?

THANK YOU!
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