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Multicores & Networks-on-Chip

TILE-Gx72] 80-core Intel TeraFlops!? 2880-core KEPLER (Nvidia)!

= With increasing number of heterogeneous cores,
communication-centric design paradigm is becoming critical
(Networks-on-Chip)
= Energy consumed for communication is increasing
» Traffic patterns exhibit temporal and spatial fluctuations

[1] http://www.tilera.com/products/processors/TILE-Gx_Family [2] http://www.intel.com/pressroom/kits/teraflops/ [3] http://www.nvidia.com/object/nvidia-kepler.html
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Energy & Bandwidth Limitations

Compute energy

» Interconnect energy is scaling slower than
compute energy as technology and number
of cores continue to scale

On die IC energy

90 65 45 32 22 14 10 7
: Technology (nm)

" Reduced bandwidth/throughput due to RS Al
voltage/frequency scaling

» Potential Solutions:
Photonics, 3D Stacking, Wireless

= Traffic patterns exhibit temporal and spatial fluctuations

» Potential Solution:
Dynamic Bandwidth Reconfiguration
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Why Photonics?

= Photonics provides

v Low energy (7.9 fJ/bit) Sk i ..
v Small footprint (~2.5 pym) T | - \.
v" High bandwidth (~40 Gbps) | — iy
v Low latency (10.45 ps/mm)
v CMOS compatible

<

1. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, K. Bergman, “40-Gb/s DPSK Data Transmission Through a Silicon Microring Switch," IEEE Photonics
Technology Letters 24.
2. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235-18242 (2010)
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Photonic Link

Micro-ring
resonator

Laser power
« Compensates for a variety of light losses along its path

Trimming power

* Microring resonators are sensitive to temperature variations.

« They require additional trimming power to maintain their
resonant wavelength
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Static Power Challenge

®mLaser mTrimming Power Others (routing, O/E, E/O conversion)

100%

S ano More than
s 80% - 60% of total
S s0% power budget!
b
D 40% -
5)
=
S 20% -

0% -

Radix-32 Corona Flexishare
SWMR

» The laser source and on-chip micro-ring resonators trimming power
represent the majority of network power

» Potential Solution:
Dynamic Power Scaling
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= SHARP
= Architecture & Implementation
= Dynamic Bandwidth & Power Scaling
= Machine Learning
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SHARP: Shared Heterogeneous Architecture for

Reconfigurable Photonic Network-on-Chip

= Key goal

= Provide scalable bandwidth and save static optical power while
meeting performance constraints

= Hardware Design

» Ring-based photonic crossbar that combines both CPU and
GPU cores together into a cluster

* Propose R-SWMR to reduce power consumption

= Novelty

» Fine-grain dynamic bandwidth allocation without global
coordination

» Refine the bandwidth and power scaling using machine learning
algorithms

= Main result

= Static power savings more than 45% - 65%, with 0.3% -14%
penalty on throughput
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SHARP Architecture: Checkerboard Pattern

L1

GPuL2 | CPUL2
L1

2 CPU, 4 GPUs
Private L1 and Shared L2
Cache

Pl-Meeting



Inter-Router Communication

Single Write Multiple Reader (SWMR) Multiple Write Single Reader (MWSR)
R, R, R, R; ==~ | Rwa i R, R, R, Ry |~~~ | Rna
« Dedicated crossbar channel — .+ Shared crossbar channel —
local control & coordination global control & coordination
« Broadcast optical signal — .+ Point-to-point optical signal —
consumes more power § consumes less power
Reservation >
Waveguide T ‘ ‘ l t
Ro R, R, R; |-~ | Rwa
Data %ﬁ
Waveguide Reservation Data
CPU Data —
GPU Data —_—

* Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang and A. Choudhary, “Firefly: llluminating Future Network-on-Chip with Nanophotonics”, Proc.

International Symposium on Computer Architecture, 2009, pp. 429- 440
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Router Microarchitecture
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Dynamic Bandwidth Scaling

Step 0:  For each individual routers Ry through Ry ;

 Predict buffer occupancy complete steps | through 7

Step 1:  Calculate the buffer occupancy B, for each input buffer
j—1 Bocup-o through Bocyp- -1 in router R,,
Z i=0 B ufl X a; Step 2: Bocup for routers Bocyp-o through Bocyp--1) are sent to Buffer
; Occupancy Calculator
] Step 3:  Calculate Scpy using Bocup-o through Bocup-k-1)
Step 4: _Calculate Sgpy using Bocyp i through Bocs .1y
k—1 Step 5: | Determine the amount of bandwidth to be allocated
Zi:() Bufl X a; to the CPU and GPU core types:
ﬁOcup(GPU) - k Ifﬁ(;pU =0and

Bepu >0
GPUBandwidth = 0% Bandwidth

CPUgunawian = 100% Bandwidth

« Re-allocate bandwidth Else if fopy = 0 and

Beru >0

between CPU and GPU CPUscwois = 100% Bandwidth
CPUgunawian = 0% Bandwidth
Else ifABGPU < )BGPU—UpperBound
CO reS GPUpgundgwian = 25% Bandwidth
CPU gunawiam = 75% Bandwidth

 Prioritize CPU requests Blse if fory < ferts oo

GPUgunawiam = 715% Bandwidth
over GPU re guests E1CPUBMWW = 25% Bandwidth
se

L. GPUgunawiam = 50% Bandwidth
« Make decisions locally CPUpngon = 50% Bandwidih
. Step 6: ~Send reservation packet via reservation-

USI ng R'SWM R assisted SWMR link
Step 7:  Transmit Data Using specified wavelengths on the

first come first serve basis

IBOcup(CPU) —
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Dynamic Power Scaling

Step 0:  For each individual routers Ry through Ry
complete steps 1 through 9

° Power SC al | ng by tu rn | n g Oﬁ Step 1:  Calculate the buffer occupancy SBocyp for each input buffer

Bocup-o through Bocyp-G-1) in router Ry,

Step 2: for routers 3 through Bocup-(i-1) are sent to Buffer
select wavelengths (from Oty CHloT Ot
Step 3:  Calculate Scpy using Bocup-o through Bocup-k-1)

64_48 - 3 2 - 1 6 - 8) Step 4 Calculate Bgpy using Bocupk through Bocup--1)

* On-chip laser with a 2ns
tu rn-o n de I a‘y haS bee n Step 7:  Transmit Data Using spe'ciﬁed wavelengths on the
p ro posed [1’2’3] Step 8: _2;5: ;zi?er&afisfrtv;‘:irgrf \z?igow RW, sum the total buffer

occupancy Broa for each cycle
Step 9: | At the end of RW, determine the number of wavelengths WL

d Rese rvatlo n WI ndOWS Set to for the outgoing waveguide at Router Ry,:

If Brotar > Thresholdypper
500 and 2000 cycles Tl

WL= 48 Wavelengths

Else If Broar > T hresholdyig-lower
WL= 32 Wavelengths

Else If Broar > Thresholdywer
WL= 16 Wavelengths

Else
WL= 8 Wavelengths

[1] K. P. E. Kotelnikov, A. Katsnelson and I. Kudryashov, “Highpower single-mode ingaasp/inp laser diodes for pulsed operation,” Proceedings of SPIE, vol. 8277
827715, pp. 1-6, 2012.

[2] M. Heck and J. Bowers, “Energy Efficient and Energy Proportional Optical Interconnects for Multi-core Processors: Driving the Need for On-chip Sources”,
IEEE Journal of Selected Topics in Quantum Electronics 20(4)(2014), pp. 1-12.

[3] T. Wang, H. Liu, A. Lee, F. Pozzi and A. Seeds, “1.3-um InAs/GaAs Quantum-dot Lasers Monolithically Grown on Si Substrates”, Optics Express
19(12)(2011), pp. 11381-11386
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Machine Learning for Power Scaling

* Why Machine learning?

— Machine learning uses a proactive technique instead
of reactive

« The machine learning uses linear ridge
regression with the following error function:

N
_ 1 A
Ew) =5 ) (W' pCen) = o} + 5 Iwll?
n=1

* Brotar 9€ts replaced with the number of
predicted packets injected into each router for
the next reservation window

[1] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
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» Performance Analysis
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Simulation Methodology

= Architecture Specifications
= 32-CPU (32KB L1 Instruction, 64KB L1 Data, 256KB L2 Cache)
» 64-GPU (64KB L1 Instruction, 512KB L2 Cache)

» Traces collected using Multi2ZSim on CPU Benchmarks (PARSEC 2.1
and Splash-2) and GPU Benchmarks (OpenCL SDK)

= Networks-on-Chip Model
» Cycle-accurate simulator based on Netsim + Dsent for power analysis

» Compared against SHARP-Dyn variations and CMESH
» FCFS - First Come First Serve
= CoSeg — Core Segregation
= BanSp — Bandwidth Split

= Performance Analysis
» Analyzed throughput, energy/bit
= Sensitivity to different wavelengths (16, 32, 64)

= Reconfiguration window sizing (500 and 2000 cycles)
Pl-Meeting TEAL 17



Throughput Achieved (Dynamic Bandwidth Scaling)

SHARP-Dyn improves throughput

by 34% over CMESH

4.5

< 1D MO N W A WO O

SHARP-Dyn improves throughput
6-14% over other variations

9|0AD J1ad salAg

™

9\

—

o

2 SHARP-CoSeg &SHARP-FCFS ®=CMESH

=N SHARP-BanSp

= SHARP-Dyn
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Energy per bit (Dynamic Bandwidth Scaling)

64 Wavelengths 32 Wavelengths 16 Wavelengths
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SHARP-Dyn saves 24% more power than CMESH architecture
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» Other Research Accomplishments
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CLAPNET — Clockwise Counter-Clockwise

Architecture

* Reduces signal propagation distance Laser
= Split crossbar architecture to reduce router , ;
complexity (dual lasers) LU U ©
= Bandwidth reconfiguration and power ) 2
regulaton Ao .
| :
I
- Ucw Row
Laser Groups
----- Avg. Link Util. Threshold
0\09 ’ &'5"0 @"0 é\*‘e @é q"o & &'bo @"0 é&o —— Laser State
‘9& b"’o\ ,&’9‘ & °© @1" g¢ g 01 1
’o\°° d 000 .%008 R o 9
o 8006 {1 8
o . . 2004 [f————— gt L
Results indicated 13% improvement in 2 0.02 ot ¥ Pty g
throughput and 48% reduction in power E oL ) g S
consumption :>: Q ’;19'1?‘00,60 b“bo@o,‘,»o%b‘og@'s%o
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Laser Pooling

?ruadhandR_ingRescnator Power Waveguide m Share a pOOI Of Iaser
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Conclusions

= Photonic interconnects can improve the performance/Watt
when compared to traditional electrical interconnects

= Wall-plug (coupling) efficiency of lasers
» Thermal stability and sensitivity

» As traffic exhibits temporal and spatial fluctuations, bandwidth
reconfiguration can improve throughput

= Static optical power (laser, trimming power) Is a significant
portion of the total power consumption and power reduction
technigues are essential

= Machine learning algorithms could potentially provide higher
throughput and power savings
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Journal and Conference Publications & Students Graduated

JOURNALS

Matthew Kennedy and Avinash Kodi, “Laser Pooling: Static and Dynamic Laser Power Allocation for On-Chip Optical Interconnects,” Accepted to appear in
IEEE/OSA Journal of Lightwave Technology (JLT), Special Issue on Optical Interconnects Conference, Sept/Oct 2017.

Matthew Kennedy and Avinash Kodi, “CLAP-NET: Bandwidth Adaptive and Power Regulated Optical Crossbar Architecture,” Elsevier Journal of Parallel
and Distributed Systems (JPDC), vol. 100, pp. 130-139, February 2017.

Randy Morris, Evan Jolley and Avinash Kodi, “Extending the Performance and Energy-Efficiency of Nanophotonic Interconnects for Shared Memory
Multicores,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 25, no. 1, pp. 83-93, January 2014.

Randy Morris, Avinash Kodi, Ahmed Louri and Ralph Whaley, “3D Stacked Nanophotonic Architecture with Minimal Reconfiguration,” IEEE Transactions on
Computers (TC), vol. 63, no. 1, pp. 243-255, January 2014.

CONFERENCES

Ashif Sikder, Avinash Kodi and Ahmed Louri, “R-OWN: Reconfigurable Optical Wireless NoC Architectures,” 3@ ACM International Conference on Nanoscale
Computing and Communication (NanoCom), New York, NY, September 28-29, 2016.

Matthew Kennedy and Avinash Kodi, “On Demand Laser Power Allocation for On-Chip Optical Interconnects” Optical Interconnects Conference (OIC), San
Diego, CA, May 9-11, 2016.

Scott VanWinkle, Matthew Kennedy, Dominic DiTomaso and Avinash Kodi, “Energy Efficient Optical Network-on-Chip Architecture for Heterogeneous
Multicores,” Optical Interconnects Conference (OIC), San Diego, CA, May 9-11, 2016.

Matthew Kennedy and Avinash Kodi, “Cross-Chip: Low Power Processor-to-Memory Nanophotonic Interconnect Architecture,” Workshop on Energy-Efficient
Networks of Computers (E2NC) held in conjunction with (IGSC’15), Las Vegas, NV, Dec 14-16, 2015.

Ashif Sikdar, Matthew Kennedy, Avinash Kodi, Savas Kaya and Ahmed Louri, “OWN: Optical Wireless Network-on-Chips (NoCs) for Kilo-Core Architectures,”
231 Annual Symposium on High-Performance Interconnects (Hot Interconnects), Santa Clara, CA, August 26-28, 2015.

Matthew Kennedy, Brian Neel and Avinash Kodi, “Runtime Power Reduction Techniques in On-Chip Photonic Interconnects,” 25" ACM’s Great Lakes VLSI
Symposium (GLSVLSI), Pittsburgh, Pennsylvania, May 20-22, 2015.

Matthew Kennedy and Avinash Kodi, “Design of Bandwidth Adaptive Nanophotonic Crossbars with Clockwise/Counter-Clockwise Optical Routing,” 28"
International Conference on VLSI Design, Bangalore, India, January 3-7, 2015.

STUDENTS GRADUATED

Scott VanWinkle, “Shared Heterogeneous Architecture with Reconfigurable Photonic Network-on-Chips,” M.S. thesis, Ohio University, August 2017.
Ashif Sikdar, “Emerging Technologies in On-Chip and Off-Chip Interconnection Network," M.S. thesis, Ohio University, August 2016.

Matthew Kennedy, “Power-Efficient Nanophotonic Architectures for Intra- and Inter-Chip Communication,” M.S. thesis, Ohio University, April 2016.
Dominic DiTomaso, “Proactive and Reactive Fault Tolerant Network-on-Chips Architectures using Machine Learning,” Ph.D. Dissertation, August 2015.

Brian Neel, “High-Performance Shared Memory Networking in Future Many-core Architectures Using Optical Interconnects," M.S. thesis, Ohio University, May
2014.

Pl-Meeting TEAL 26



Questions?

THANK YOU!




