NSF CNS #1318981: Power-Efficient 3D Reconfigurable Photonic Interconnect for Multicores In collaboration with George Washington University (GWU) with PI, Ahmed Louri

SHARP: Shared Heterogeneous Architecture with Reconfigurable Photonic Network-on-Chip

Scott VanWinkle and Avinash Kodi

Technologies for Emerging Computer Architecture Laboratory (TEAL) School of Electrical Engineering and Computer Science Ohio University, Athens OH, USA

CSR PI Meeting, Orlando, Florida, June 2, 2017

Contact Website: http://oucsace.cs.ohiou.edu/~avinashk/

Outline

Introduction & Motivation

- SHARP
 - Architecture & Implementation
 - Dynamic Bandwidth & Power Scaling
 - Machine Learning
- Performance Analysis
- Other Research Accomplishments

Multicores & Networks-on-Chip

TILE-Gx72^[1]

80-core Intel TeraFlops^[2]

2880-core KEPLER (Nvidia)^[3]

- With increasing number of heterogeneous cores, communication-centric design paradigm is becoming critical (Networks-on-Chip)
 - Energy consumed for communication is increasing
 - Traffic patterns exhibit temporal and spatial fluctuations

[1] http://www.tilera.com/products/processors/TILE-Gx_Family [2] http://www.intel.com/pressroom/kits/teraflops/ [3] http://www.nvidia.com/object/nvidia-kepler.html PI-Meeting TEAL 3

Energy & Bandwidth Limitations

- Interconnect energy is scaling slower than compute energy as technology and number of cores continue to scale
- Reduced bandwidth/throughput due to voltage/frequency scaling

Potential Solutions:
Photonics, 3D Stacking, Wireless

Potential Solution:Dynamic Bandwidth Reconfiguration

Source: S. Borkar, Exascale Computing- a fact or fiction?, Intel, 2013 http://www.ipdps.org/ipdps2013/SBorkar_IPDPS_May_2013.pdf

Why Photonics?

Photonics provides

- ✓ Low energy (7.9 fJ/bit)
- ✓ Small footprint (~2.5 µm)
- ✓ High bandwidth (~40 Gbps)
- ✓ Low latency (10.45 ps/mm)
- ✓ CMOS compatible

1. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, K. Bergman, "40-Gb/s DPSK Data Transmission Through a Silicon Microring Switch," *IEEE Photonics Technology Letters* 24.

2. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Opt. Express 18, 18235-18242 (2010)

TEAL

Photonic Link

Compensates for a variety of light losses along its path

Trimming power

- Microring resonators are sensitive to temperature variations.
- They require additional trimming power to maintain their resonant wavelength

Static Power Challenge

 The laser source and on-chip micro-ring resonators trimming power represent the majority of network power

Potential Solution: Dynamic Power Scaling

Outline

- Introduction & Motivation
- SHARP
 - Architecture & Implementation
 - Dynamic Bandwidth & Power Scaling
 - Machine Learning
- Performance Analysis
- Other Research Accomplishments

SHARP: Shared Heterogeneous Architecture for Reconfigurable Photonic Network-on-Chip

- Key goal
 - Provide scalable bandwidth and save static optical power while meeting performance constraints
- Hardware Design
 - Ring-based photonic crossbar that combines both CPU and GPU cores together into a cluster
 - Propose R-SWMR to reduce power consumption
- Novelty
 - Fine-grain dynamic bandwidth allocation without global coordination
 - Refine the bandwidth and power scaling using machine learning algorithms

Main result

Static power savings more than 45% - 65%, with 0.3% -14% penalty on throughput

PI-Meeting

SHARP Architecture: Checkerboard Pattern

PI-Meeting

TEAL

Inter-Router Communication

- Dedicated crossbar channel local control & coordination
- Broadcast optical signal consumes more power

Multiple Write Single Reader (MWSR)

- Shared crossbar channel global control & coordination
- Point-to-point optical signal consumes less power

 Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang and A. Choudhary, "Firefly: Illuminating Future Network-on-Chip with Nanophotonics", Proc. International Symposium on Computer Architecture, 2009, pp. 429- 440 PI-Meeting

Router Microarchitecture

Dynamic Bandwidth Scaling

• Predict buffer occupancy

 $\beta_{Ocup(CPU)} = \frac{\sum_{i=0}^{j-1} Buf_i \times a_i}{j}$

$$\beta_{Ocup(GPU)} = \frac{\sum_{i=0}^{k-1} Buf_i \times a_i}{k}$$

- Re-allocate bandwidth between CPU and GPU cores
- Prioritize CPU requests
 over GPU requests
- Make decisions locally using R-SWMR

Step 0:	For each individual routers R_0 through R_{N-1}
_	complete steps 1 through 7
Step 1:	Calculate the buffer occupancy β_{Ocup} for each input buffer
	$\beta_{\text{Ocup-0}}$ through $\beta_{\text{Ocup-(j-1)}}$ in router \mathbf{R}_{ω}
Step 2:	β_{Ocup} for routers $\beta_{\text{Ocup-0}}$ through $\beta_{\text{Ocup-(j-1)}}$ are sent to Buffer
	Occupancy Calculator
Step 3:	Calculate β_{CPU} using β_{Ocup-0} through $\beta_{Ocup-(k-1)}$
Step 4:	Calculate β_{GPU} using $\beta_{\text{Ocup-k}}$ through $\beta_{\text{Ocup-(i-1)}}$
Step 5:	Determine the amount of bandwidth to be allocated
	to the CPU and GPU core types:
	If $\beta_{\rm GPU} = 0$ and
	$eta_{ ext{CPU}} > 0$
	$GPU_{Bandwidth} = 0\% Bandwidth$
	$CPU_{Bandwidth} = 100\% Bandwidth$
	Else if $\beta_{CPU} = 0$ and
	$eta_{ m GPU}>0$
	$GPU_{Bandwidth} = 100\% Bandwidth$
	$CPU_{Bandwidth} = 0\% Bandwidth$
	Else if $\beta_{\text{GPU}} < \beta_{\text{GPU-UpperBound}}$
	$GPU_{Bandwidth} = 25\% Bandwidth$
	$CPU_{Bandwidth} = 75\% Bandwidth$
	Else if $\beta_{\text{CPU}} < \beta_{\text{CPU-UpperBound}}$
	$GPU_{Bandwidth} = 75\% Bandwidth$
	$CPU_{Bandwidth} = 25\% Bandwidth$
	Else
	$GPU_{Bandwidth} = 50\% Bandwidth$
	$CPU_{Bandwidth} = 50\% Bandwidth$
Step 6:	Send reservation packet via reservation-
	assisted SWMR link
Step 7:	Transmit Data Using specified wavelengths on the
	first come first serve basis

Dynamic Power Scaling

- Power scaling by turning off select wavelengths (from 64-48-32-16-8)
- On-chip laser with a 2ns turn-on delay has been proposed ^[1,2,3]
- Reservation windows set to 500 and 2000 cycles

Step 0:	For each individual routers R_0 through R_{N-1}
	complete steps 1 through 9
Step 1:	Calculate the buffer occupancy β_{Ocup} for each input buffer
	$\beta_{\text{Ocun-0}}$ through $\beta_{\text{Ocun-(i-1)}}$ in router R_{ω}
Step 2:	β_{Ocup} for routers β_{Ocup} through β_{Ocup} (i.i.) are sent to Buffer
Step -	Occupancy Calculator
Step 3:	Calculate β_{CPU} using β_{Ocup-0} through $\beta_{Ocup-(k-1)}$
Step 4:	Calculate β_{GPU} using $\beta_{\text{Ocup},k}$ through $\beta_{\text{Ocup},(i-1)}$
Step 7:	Transmit Data Using specified wavelengths on the
	first come first serve basis
Step 8:	For each reservation window RW, sum the total buffer
	occupancy β_{Total} for each cycle
Step 9:	At the end of RW , determine the number of wavelengths WL
	for the outgoing waveguide at Router R_{ω} :
	If $\beta_{\text{Total}} > Threshold_{\text{upper}}$
	WL= 64 Wavelengths
	Else If $\beta_{\text{Total}} > Threshold_{\text{mid-upper}}$
	WL= 48 Wavelengths
	Else If $\beta_{\text{Total}} > Threshold_{\text{mid-lower}}$
	WL= 32 Wavelengths
	Else If $\beta_{\text{Total}} > Threshold_{\text{lower}}$
	WL= 16 Wavelengths
	Else
	WL= 8 Wavelengths

[1] K. P. E. Kotelnikov, A. Katsnelson and I. Kudryashov, "Highpower single-mode ingaasp/inp laser diodes for pulsed operation," Proceedings of SPIE, vol. 8277 827715, pp. 1–6, 2012.

[2] M. Heck and J. Bowers, "Energy Efficient and Energy Proportional Optical Interconnects for Multi-core Processors: Driving the Need for On-chip Sources", IEEE Journal of Selected Topics in Quantum Electronics 20(4)(2014), pp. 1-12.

[3] T. Wang, H. Liu, A. Lee, F. Pozzi and A. Seeds, "1.3-µm InAs/GaAs Quantum-dot Lasers Monolithically Grown on Si Substrates", Optics Express 19(12)(2011), pp. 11381-11386

Machine Learning for Power Scaling

- Why Machine learning?
 - Machine learning uses a proactive technique instead of reactive
- The machine learning uses linear ridge regression with the following error function:

$$\tilde{E}(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ \boldsymbol{w}^{T} \boldsymbol{\phi}(x_{n}) - t_{n} \}^{2} + \frac{\lambda}{2} \| \boldsymbol{w} \|^{2}$$

 β_{Total} gets replaced with the number of predicted packets injected into each router for the next reservation window

Outline

- Introduction & Motivation
- SHARP
 - Architecture & Implementation
 - Dynamic Bandwidth & Power Scaling
 - Machine Learning
- Performance Analysis
- Other Research Accomplishments

Simulation Methodology

Architecture Specifications

- 32-CPU (32KB L1 Instruction, 64KB L1 Data, 256KB L2 Cache)
- 64-GPU (64KB L1 Instruction, 512KB L2 Cache)
- Traces collected using Multi2Sim on CPU Benchmarks (PARSEC 2.1 and Splash-2) and GPU Benchmarks (OpenCL SDK)

Networks-on-Chip Model

- Cycle-accurate simulator based on Netsim + Dsent for power analysis
- Compared against SHARP-Dyn variations and CMESH
 - FCFS First Come First Serve
 - CoSeg Core Segregation
 - BanSp Bandwidth Split
- Performance Analysis
 - Analyzed throughput, energy/bit
 - Sensitivity to different wavelengths (16, 32, 64)
 - Reconfiguration window sizing (500 and 2000 cycles)

PI-Meeting

TEAL

Throughput Achieved (Dynamic Bandwidth Scaling)

 $\equiv SHARP-Dyn \quad \boxtimes SHARP-BanSp \quad \boxtimes SHARP-CoSeg \quad \boxtimes SHARP-FCFS \quad \boxplus CMESH$

TEAL

Energy per bit (Dynamic Bandwidth Scaling)

Machine Learning - Throughput

Machine Learning – Power Analysis

Outline

- Introduction & Motivation
- SHARP
 - Architecture & Implementation
 - Dynamic Bandwidth & Power Scaling
 - Machine Learning
- Performance Analysis
- Other Research Accomplishments

CLAPNET – Clockwise Counter-Clockwise Architecture

- Reduces signal propagation distance
- Split crossbar architecture to reduce router complexity (dual lasers)
- Bandwidth reconfiguration and power regulation

CCW

Laser

3

2

Laser Pooling

- Share a pool of laser power between participating nodes that can be claimed ondemand
- Dynamically scaling laser power and the pool of optical channels
- FCFS allocation policy

Conclusions

- Photonic interconnects can improve the performance/Watt when compared to traditional electrical interconnects
 - Wall-plug (coupling) efficiency of lasers
 - Thermal stability and sensitivity
- As traffic exhibits temporal and spatial fluctuations, bandwidth reconfiguration can improve throughput
- Static optical power (laser, trimming power) is a significant portion of the total power consumption and power reduction techniques are essential
- Machine learning algorithms could potentially provide higher throughput and power savings

Journal and Conference Publications & Students Graduated

JOURNALS

- Matthew Kennedy and Avinash Kodi, "Laser Pooling: Static and Dynamic Laser Power Allocation for On-Chip Optical Interconnects," Accepted to appear in IEEE/OSA Journal of Lightwave Technology (JLT), Special Issue on Optical Interconnects Conference, Sept/Oct 2017.
- Matthew Kennedy and Avinash Kodi, "CLAP-NET: Bandwidth Adaptive and Power Regulated Optical Crossbar Architecture," Elsevier Journal of Parallel and Distributed Systems (JPDC), vol. 100, pp. 130-139, February 2017.
- Randy Morris, Evan Jolley and Avinash Kodi, "Extending the Performance and Energy-Efficiency of Nanophotonic Interconnects for Shared Memory Multicores," IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 25, no. 1, pp. 83-93, January 2014.
- Randy Morris, Avinash Kodi, Ahmed Louri and Ralph Whaley, "3D Stacked Nanophotonic Architecture with Minimal Reconfiguration," IEEE Transactions on Computers (TC), vol. 63, no. 1, pp. 243-255, January 2014.

CONFERENCES

- Ashif Sikder, Avinash Kodi and Ahmed Louri, "R-OWN: Reconfigurable Optical Wireless NoC Architectures," 3rd ACM International Conference on Nanoscale Computing and Communication (NanoCom), New York, NY, September 28-29, 2016.
- Matthew Kennedy and Avinash Kodi, "On Demand Laser Power Allocation for On-Chip Optical Interconnects" Optical Interconnects Conference (OIC), San Diego, CA, May 9-11, 2016.
- Scott VanWinkle, Matthew Kennedy, Dominic DiTomaso and Avinash Kodi, "Energy Efficient Optical Network-on-Chip Architecture for Heterogeneous Multicores," Optical Interconnects Conference (OIC), San Diego, CA, May 9-11, 2016.
- Matthew Kennedy and Avinash Kodi, "Cross-Chip: Low Power Processor-to-Memory Nanophotonic Interconnect Architecture," Workshop on Energy-Efficient Networks of Computers (E2NC) held in conjunction with (IGSC'15), Las Vegas, NV, Dec 14-16, 2015.
- Ashif Sikdar, Matthew Kennedy, Avinash Kodi, Savas Kaya and Ahmed Louri, "OWN: Optical Wireless Network-on-Chips (NoCs) for Kilo-Core Architectures," 23rd Annual Symposium on High-Performance Interconnects (Hot Interconnects), Santa Clara, CA, August 26-28, 2015.
- Matthew Kennedy, Brian Neel and Avinash Kodi, "Runtime Power Reduction Techniques in On-Chip Photonic Interconnects," 25th ACM's Great Lakes VLSI Symposium (GLSVLSI), Pittsburgh, Pennsylvania, May 20-22, 2015.
- Matthew Kennedy and Avinash Kodi, "Design of Bandwidth Adaptive Nanophotonic Crossbars with Clockwise/Counter-Clockwise Optical Routing," 28th International Conference on VLSI Design, Bangalore, India, January 3-7, 2015.

STUDENTS GRADUATED

- Scott VanWinkle, "Shared Heterogeneous Architecture with Reconfigurable Photonic Network-on-Chips," M.S. thesis, Ohio University, August 2017.
- Ashif Sikdar, "Emerging Technologies in On-Chip and Off-Chip Interconnection Network," M.S. thesis, Ohio University, August 2016.
- Matthew Kennedy, "Power-Efficient Nanophotonic Architectures for Intra- and Inter-Chip Communication," M.S. thesis, Ohio University, April 2016.
- Dominic DiTomaso, "Proactive and Reactive Fault Tolerant Network-on-Chips Architectures using Machine Learning," Ph.D. Dissertation, August 2015.
- Brian Neel, "High-Performance Shared Memory Networking in Future Many-core Architectures Using Optical Interconnects," M.S. thesis, Ohio University, May 2014.

Questions? THANK YOU!