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Learning Outcomes

At the end of this lecture, you will be able to

o Differentiate cases where GPU are useful and when they are not.
@ Explain the processing flow of accelerated applications.
@ Decompose computation in blocks and threads.

@ Write trivial kernels.

The assignment will ask you to
@ Transfer data back and forth from a GPU.

@ Implement a kernel.

@ Relate data transfer overhead to computational volume.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 2 /44



© Why GPGPU?

@ Principle

© Compilation

@ Memory management

© Writing kernels : vector addition
e Error Management

@ Resources
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Why is GPGPU so popular?

Availability

Most discrete graphic cards produced by NVIDIA, AMD, or Intel can be

programmed to do general purpose computation. Most machines have
them.
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Why is GPGPU so popular?

Availability

Most discrete graphic cards produced by NVIDIA, AMD, or Intel can be
programmed to do general purpose computation. Most machines have
them.

A good bang for buck ratio (numbers from 2017)

A modern CPU: Intel Xeon Processor E5-4610 v2 (8 cores, 16M Cache,
2.30 GHz, AVX): 294Gflop/s, 51.2 GB/s, $1220.

A modern GPU: NVIDIA K20, 3.52Tflop/s, 208GB/s, $3500

Roughly, 10 times the flops, 4 times the bandwidth, 3 times the price.
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Why is GPGPU so popular?

Availability

Most discrete graphic cards produced by NVIDIA, AMD, or Intel can be

programmed to do general purpose computation. Most machines have
them.

A good bang for buck ratio (numbers from 2017)

A modern CPU: Intel Xeon Processor E5-4610 v2 (8 cores, 16M Cache,
2.30 GHz, AVX): 294Gflop/s, 51.2 GB/s, $1220.

A modern GPU: NVIDIA K20, 3.52Tflop/s, 208GB/s, $3500

Roughly, 10 times the flops, 4 times the bandwidth, 3 times the price.

So what is the catch?
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The catch compared to CPUs

@ Less memory: A GPU typically has only a limited amount of memory.
A Tesla K40 has 12GB. You can build a 2TB machine out of CPUs.

@ Alien to program: Code can not be just recompiled. It needs to be
ported.

@ Complex architecture: Complex architectural details must be
accounted for to get performance.

o Computation must be massively parallel: Lots of threads
(10,000+) on many (1000s) dumb cores.

@ Overall, that is what is referred to as "low latency” (CPUs) and
"High throughput” (GPUs)
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Options to program them

o Libraries. No need to worry about anything, the library does
everything for you.

OpenCL. Some generic programming model for “heterogeneous
systems” that maps to various architectures. Originally targeted for
GPUs, but also works on multicore processors

Pragmas. OpenACC is similar to OpenMP for accelerators. Support
in OpenMP is coming.
o CUDA. “Native” programming model for NVIDIA GPUs.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 6 /44



Many of the following slides are from
Sarah Tariq's slides. “An Introduction to

GPU Computing and CUDA
Architecture” .

Almost everything you need to know
about GPUs are in “NVIDIA CUDA C
Programming Guide” published by
NVIDIA.




Outline

@ Principle
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Heterogeneous Computing

= Terminology:
= Host The CPU and its memory (host memory)
= Device The GPU and its memory (device memory)

Device
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Heterogeneous Computing rf,%A

r parallel fn

serial code

- parallel cod/ §
serial code
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Simple Processing Flow <3

NVIDIA

CPU Memory

1. Copy input data from CPU memory to GPU

memory —
L2

N O

DRAM
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Simple Processing Flow <3

NVIDIA

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance
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Outline

© Compilation
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=

NVIDIA

Hello World!

int main(void) {
printf ("Hello World!\n");
return 0;

= Standard C that runs on the host

= NVIDIA compiler (nvcc) can be used to compile
programs with no device code
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Hello World! with Device Code

global void mykernel (void) {

nt main(void) {
mykernel<<<1l,1>>>();
printf ("Hello World!\n");
return 0;

= Two new syntactic elements...
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=

NVIDIA

Hello World! with Device Code

= CUDA C/C++ keyword giobal indicates a function that:
= Runs on the device
= |Is called from host code

* nvcc separates source code into host and device components
= Device functions (e.g. mykernel ()) processed by NVIDIA compiler

= Host functions (e.g. main ()) processed by standard host compiler
- gcg,cl.exe
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=

NVIDIA

Hello World! with Device Code

mykernel<<<l,1>>>();

= Triple angle brackets mark a call from host code to device code
= Also called a “kernel launch”
= We'll return to the parameters (1,1) in a moment

= That’s all that is required to execute a function on the GPU!
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Hello World! with Device Code

global void mykernel (void) {

nt main(void) {
mykernel<<<1l,1>>>();
printf ("Hello World!\n");
return 0;

» mykernel () does nothing, somewhat
anticlimactic!
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Outline

@ Memory management
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Erik Saule (Par. Co.)

Addition on the Device: main ()

e £1- 0 19), (©IF
t *d a, *d b, *d c;
int size = zeof (int) ;

cudaMalloc ((void **)&d_a, size);
cudaMalloc ((void **)&d_b, size);
cudaMalloc ((void **)&d c, size);
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=

NVIDIA

Addition on the Device: main ()

cudaMemcpy (d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d_b, &b, size, cudaMemcpyHostToDevice);
add<<<1,1>>>(d_a, d b, d_c);

cudaMemcpy (&c, d_c, size, cudaMemcpyDeviceToHost);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
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Other kind of memory management techniques: later
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Outline

© Writing kernels : vector addition
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Parallel Programming in CUDA C/C++ ,f,%,,

= But wait... GPU computing is about massive
parallelism!

= We need a more interesting example...

= We'll start by adding two integers and build up +
to vector addition
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>

NVIDIA

Addition on the Device

= A simple kernel to add two integers

global oid add(int *a, glic, “Io), - BE@) - |

*c = *a + *b;

» Asbefore giobal isa CUDA C/C++ keyword meaning
= add() will execute on the device
= add() will be called from the host

So a, b, ¢ must be on the device.
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=

NVIDIA

Moving to Parallel

= GPU computing is about massive parallelism
= So how do we run code in parallel on the device?

= Instead of executing add () once, execute N times in parallel
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Vector Addition on the Device >

NVIDIA

» With aad () running in parallel we can do vector addition

» Terminology: each parallel invocation of aad () is referred to as a block
= The set of blocks is referred to as a grid
= Each invocation can refer to its block index using blockTdx.x

global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= By using blockIdx.x to index into the array, each block handles a
different index
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>

NVIDIA

Vector Addition on the Device

1 add (int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= On the device, each block can execute in parallel:

Block 0 } Block 1
\‘ o 3
Block 2 Block 3

The word is “can” not “will". There is no certainty: maybe it will, maybe

it won't.
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CUDA Threads <

n\;-II‘JTA
= Terminology: a block can be split into parallel threads

= Let’'s change add () to use parallel threads instead of parallel blocks

Using blocks:

.G bal oid add(int *a, r W9, e @) 4

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; add<<<N,1>>>(d_a, d b, d c);
}

Using threads:

glob void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x]

+ b[threadIdx.x]; add<<<l,N>>>(d a, d b, d c);
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A

~l
NVIDIA

Combining Blocks and Threads

= We've seen parallel vector addition using:
= Many blocks with one thread each
= One block with many threads

» Let’s adapt vector addition to use both blocks and threads

e A
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|

NVIDIA

Indexing Arrays with Blocks and Threads

* No longer as simple as using blockIdx.x and threadIdx.x
= Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x
(o[1]2[s[4]s]s[7|o[s[2[3]a[s]e]7]o]s]2[s]+|s]s[|o][2]3]a[s[e]7]
‘ Y Y

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 3

= With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;
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Vector Addition with Blocks and Threads >

NVIDIA

» Use the built-in variable b1ockpin.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

= Combined version of add () to use parallel threads and parallel blocks

global add (int *a, int *b, £ *c) |
t index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = al[index] + b[index];

= What changes need to be made in main () ?
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<

NVIDIA

Addition with Blocks and Threads: main ()

#define N

#define THREA
nt main(void) {
int *aj *begics

int *d_a, *d_b, *d_c;

nt size = N * [ ( )i

cudaMalloc (( **)&d a, size);
cudaMalloc ( (vo **)&ad, byy size);
cudaMalloc ( (vo **)&d_c, size);

a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints (b, N);
c = (int *)malloc(size);
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<

NVIDIA

Addition with Blocks and Threads: main ()

cudaMemcpy (d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice);

add<<<N/THREADS_PER_BLOCK, THREADS PER BLOCK>>>(d_a, d b, d_c);

cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d_b); cudaFree(d_c);
eturn 0;
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=

NVIDIA

Handling Arbitrary Vector Sizes

= Typical problems are not friendly multiples of vicckpin.x
= Avoid accessing beyond the end of the arrays:

__global b>id add(int *a, nt *b, nt *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)

cl[index] = al[index] + b[index];

= Update the kernel launch:
add<<< (N + M-1) / M,M>>>(d_a, d b, d_c, N);
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.
Why Bother with Threads? >

NVIDIA

= Threads seem unnecessary
= They add a level of complexity
* What do we gain?

» Unlike parallel blocks, threads have mechanisms to:
= Communicate
= Synchronize

= To look closer, we need a new example...

We'll talk about why use thread later. For now, just trust that's useful to

have both.
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Outline

e Error Management
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=

NVIDIA

Reporting Errors

= All CUDA API calls return an error code (cudakrror t)
= Errorin the API call itself
OR
= Errorin an earlier asynchronous operation (e.g. kernel)

= Get the error code for the last error:

cudaError_t cudaGetLastError (void)

= Get a string to describe the error:

char *cudaGetErrorString (cudaError_t)

printf ("$s\n", cudaGetErrorString(cudaGetLastError()));
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In other words, all errors that happen on the GPU are usually silent.
Something bad happened and you are not notified through segfault or
anything.
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Outline

@ Resources
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Resources

OpenACC: http://www.openacc-standard.org/

OpenCL: https://www.khronos.org/opencl/

CUDA homepage: http://docs.nvidia.com/cuda/index.html

CUDA programming guide: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
CUDA runtime API: http://docs.nvidia.com/cuda/cuda-runtime-api/

CUDA best practice: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide

Sarah Tariq's slides:
http://on-demand.gputechconf.com/gtc-express/2011/presentations/GTC_Express_Sarah_Tariq_June2011.pdf

Jason Sanders and Edward Kandort. CUDA by example. Addison Wesley. 2011.
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Note from a student

| found a very helpful tool in the cuda toolkit called cuda Memcheck.
compile with -lineinfo to get linenumbers in the output.

To run: cuda-memcheck ./binary options

It's that simple. It will detect memory leaks and is similar to valgrind in
output.

A link to the documentation:
http://docs.nvidia.com/cuda/cuda-memcheck/#axzz4fZdek1Vh
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