Programming General Purpose Graphic Processing Unit

using CUDA (basics)

Erik Saule
esaule@uncc.edu

Parallel Computing

11/18/2018

Erik Saule (Par. Co.) CUDA basics 11/18/2018 1/ 44

Learning Outcomes

At the end of this lecture, you will be able to

o Differentiate cases where GPU are useful and when they are not.
@ Explain the processing flow of accelerated applications.
@ Decompose computation in blocks and threads.

@ Write trivial kernels.

The assignment will ask you to
@ Transfer data back and forth from a GPU.

@ Implement a kernel.

@ Relate data transfer overhead to computational volume.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 2 /44

© Why GPGPU?

@ Principle

© Compilation

@ Memory management

© Writing kernels : vector addition
e Error Management

@ Resources

Erik Saule (Par. Co.) CUDA basics 11/18/2018 3/ 44

Why is GPGPU so popular?

Availability

Most discrete graphic cards produced by NVIDIA, AMD, or Intel can be

programmed to do general purpose computation. Most machines have
them.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 4 /44

Why is GPGPU so popular?

Availability

Most discrete graphic cards produced by NVIDIA, AMD, or Intel can be
programmed to do general purpose computation. Most machines have
them.

A good bang for buck ratio (numbers from 2017)

A modern CPU: Intel Xeon Processor E5-4610 v2 (8 cores, 16M Cache,
2.30 GHz, AVX): 294Gflop/s, 51.2 GB/s, $1220.

A modern GPU: NVIDIA K20, 3.52Tflop/s, 208GB/s, $3500

Roughly, 10 times the flops, 4 times the bandwidth, 3 times the price.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 4 /44

Why is GPGPU so popular?

Availability

Most discrete graphic cards produced by NVIDIA, AMD, or Intel can be

programmed to do general purpose computation. Most machines have
them.

A good bang for buck ratio (numbers from 2017)

A modern CPU: Intel Xeon Processor E5-4610 v2 (8 cores, 16M Cache,
2.30 GHz, AVX): 294Gflop/s, 51.2 GB/s, $1220.

A modern GPU: NVIDIA K20, 3.52Tflop/s, 208GB/s, $3500

Roughly, 10 times the flops, 4 times the bandwidth, 3 times the price.

So what is the catch?

Erik Saule (Par. Co.) CUDA basics 11/18/2018 4 /44

The catch compared to CPUs

@ Less memory: A GPU typically has only a limited amount of memory.
A Tesla K40 has 12GB. You can build a 2TB machine out of CPUs.

@ Alien to program: Code can not be just recompiled. It needs to be
ported.

@ Complex architecture: Complex architectural details must be
accounted for to get performance.

o Computation must be massively parallel: Lots of threads
(10,000+) on many (1000s) dumb cores.

@ Overall, that is what is referred to as "low latency” (CPUs) and
"High throughput” (GPUs)

Erik Saule (Par. Co.) CUDA basics 11/18/2018

Options to program them

o Libraries. No need to worry about anything, the library does
everything for you.

OpenCL. Some generic programming model for “heterogeneous
systems” that maps to various architectures. Originally targeted for
GPUs, but also works on multicore processors

Pragmas. OpenACC is similar to OpenMP for accelerators. Support
in OpenMP is coming.
o CUDA. “Native” programming model for NVIDIA GPUs.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 6 /44

Many of the following slides are from
Sarah Tariq's slides. “An Introduction to

GPU Computing and CUDA
Architecture” .

Almost everything you need to know
about GPUs are in “NVIDIA CUDA C
Programming Guide” published by
NVIDIA.

Outline

@ Principle

Erik Saule (Par. Co.) CUDA basics 11/18/2018

Heterogeneous Computing

= Terminology:
= Host The CPU and its memory (host memory)
= Device The GPU and its memory (device memory)

Device

Erik Saule (Par. Co.) CUDA basics

<

NVIDIA

11/18/2018 9 / 44

Heterogeneous Computing rf,%A

r parallel fn

serial code

- parallel cod/ §
serial code

Erik Saule (Par. Co.) CUDA basics 11/18/2018 10 / 44

Simple Processing Flow <3

NVIDIA

CPU Memory

1. Copy input data from CPU memory to GPU

memory —
L2

N O

DRAM

Erik Saule (Par. Co.) CUDA basics 11/18/2018 11 / 44

Simple Processing Flow <3

NVIDIA

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

Erik Saule (Par. Co.) CUDA basics 11/18/2018 12 / 44

Simple Processing Flow <3

NVIDIA

1. Copy input data from CPU memory to GPU

memory ocomet]
2. Load GPU program and execute, L2

1
caching data on chip for performance |: :l

3. Copy results from GPU memory to CPU ': :|
memory DRAM

Erik Saule (Par. Co.) CUDA basics 11/18/2018 13 / 44

Outline

© Compilation

Erik Saule (Par. Co.) CUDA basics 11/18/2018

Simple Processing Flow <3

NVIDIA

1. Copy input data from CPU memory to GPU

memory ocomet]
2. Load GPU program and execute, L2

1
caching data on chip for performance |: :l

3. Copy results from GPU memory to CPU ': :|
memory DRAM

Erik Saule (Par. Co.) CUDA basics 11/18/2018 15 / 44

=

NVIDIA

Hello World!

int main(void) {
printf ("Hello World!\n");
return 0;

= Standard C that runs on the host

= NVIDIA compiler (nvcc) can be used to compile
programs with no device code

Erik Saule (Par. Co.) CUDA basics 11/18/2018 16 / 44

Hello World! with Device Code

global void mykernel (void) {

nt main(void) {
mykernel<<<1l,1>>>();
printf ("Hello World!\n");
return 0;

= Two new syntactic elements...

Erik Saule (Par. Co.) CUDA basics

11/18/2018

=

NVIDIA

17 / 44

=

NVIDIA

Hello World! with Device Code

= CUDA C/C++ keyword giobal indicates a function that:
= Runs on the device
= |Is called from host code

* nvcc separates source code into host and device components
= Device functions (e.g. mykernel ()) processed by NVIDIA compiler

= Host functions (e.g. main ()) processed by standard host compiler
- gcg,cl.exe

Erik Saule (Par. Co.) CUDA basics 11/18/2018 18 / 44

=

NVIDIA

Hello World! with Device Code

mykernel<<<l,1>>>();

= Triple angle brackets mark a call from host code to device code
= Also called a “kernel launch”
= We'll return to the parameters (1,1) in a moment

= That’s all that is required to execute a function on the GPU!

Erik Saule (Par. Co.) CUDA basics 11/18/2018 19 / 44

Hello World! with Device Code

global void mykernel (void) {

nt main(void) {
mykernel<<<1l,1>>>();
printf ("Hello World!\n");
return 0;

» mykernel () does nothing, somewhat
anticlimactic!

Erik Saule (Par. Co.) CUDA basics

=

NVIDIA

11/18/2018 20 / 44

Outline

@ Memory management

Erik Saule (Par. Co.) CUDA basics /18/2018 21 / 44

Erik Saule (Par. Co.)

Addition on the Device: main ()

e £1- 0 19), (©IF
t *d a, *d b, *d c;
int size = zeof (int) ;

cudaMalloc ((void **)&d_a, size);
cudaMalloc ((void **)&d_b, size);
cudaMalloc ((void **)&d c, size);

CUDA basics

11/18/2018

<

NVIDIA

22 / 44

=

NVIDIA

Addition on the Device: main ()

cudaMemcpy (d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d_b, &b, size, cudaMemcpyHostToDevice);
add<<<1,1>>>(d_a, d b, d_c);

cudaMemcpy (&c, d_c, size, cudaMemcpyDeviceToHost);

cudaFree (d_a); cudaFree(d b); cudaFree(d c);

Erik Saule (Par. Co.) CUDA basics 11/18/2018 23 / 44

Other kind of memory management techniques: later

Erik Saule (Par. Co.) CUDA basics 11/18/2018 24 / 44

Outline

© Writing kernels : vector addition

Erik Saule (Par. Co.) CUDA basics

Parallel Programming in CUDA C/C++ ,f,%,,

= But wait... GPU computing is about massive
parallelism!

= We need a more interesting example...

= We'll start by adding two integers and build up +
to vector addition

Erik Saule (Par. Co.) CUDA basics 11/18/2018 26 / 44

>

NVIDIA

Addition on the Device

= A simple kernel to add two integers

global oid add(int *a, glic, “Io), - BE@) - |

*c = *a + *b;

» Asbefore giobal isa CUDA C/C++ keyword meaning
= add() will execute on the device
= add() will be called from the host

So a, b, ¢ must be on the device.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 27 / 44

=

NVIDIA

Moving to Parallel

= GPU computing is about massive parallelism
= So how do we run code in parallel on the device?

= Instead of executing add () once, execute N times in parallel

Erik Saule (Par. Co.) CUDA basics 11/18/2018 28 / 44

Vector Addition on the Device >

NVIDIA

» With aad () running in parallel we can do vector addition

» Terminology: each parallel invocation of aad () is referred to as a block
= The set of blocks is referred to as a grid
= Each invocation can refer to its block index using blockTdx.x

global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= By using blockIdx.x to index into the array, each block handles a
different index

Erik Saule (Par. Co.) CUDA basics 11/18/2018 29 / 44

>

NVIDIA

Vector Addition on the Device

1 add (int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= On the device, each block can execute in parallel:

Block 0 } Block 1
\‘ o 3
Block 2 Block 3

The word is “can” not “will". There is no certainty: maybe it will, maybe

it won't.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 30 / 44

CUDA Threads <

n\;-II‘JTA
= Terminology: a block can be split into parallel threads

= Let’'s change add () to use parallel threads instead of parallel blocks

Using blocks:

.G bal oid add(int *a, r W9, e @) 4

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; add<<<N,1>>>(d_a, d b, d c);
}

Using threads:

glob void add(int *a, int *b, int *c) {

c[threadIdx.x] = a[threadIdx.x]

+ b[threadIdx.x]; add<<<l,N>>>(d a, d b, d c);

Erik Saule (Par. Co.) CUDA basics

11/18/2018 31/ 44

A

~l
NVIDIA

Combining Blocks and Threads

= We've seen parallel vector addition using:
= Many blocks with one thread each
= One block with many threads

» Let’s adapt vector addition to use both blocks and threads

e A

Erik Saule (Par. Co.) CUDA basics 11/18/2018 32/ 44

|

NVIDIA

Indexing Arrays with Blocks and Threads

* No longer as simple as using blockIdx.x and threadIdx.x
= Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x
(o[1]2[s[4]s]s[7|o[s[2[3]a[s]e]7]o]s]2[s]+|s]s[|o][2]3]a[s[e]7]
‘ Y Y

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 3

= With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

Erik Saule (Par. Co.) CUDA basics 11/18/2018 33/ 44

Vector Addition with Blocks and Threads >

NVIDIA

» Use the built-in variable b1ockpin.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

= Combined version of add () to use parallel threads and parallel blocks

global add (int *a, int *b, £ *c) |
t index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = al[index] + b[index];

= What changes need to be made in main () ?

Erik Saule (Par. Co.) CUDA basics 11/18/2018 34 / 44

<

NVIDIA

Addition with Blocks and Threads: main ()

#define N

#define THREA
nt main(void) {
int *aj *begics

int *d_a, *d_b, *d_c;

nt size = N * [()i

cudaMalloc ((**)&d a, size);
cudaMalloc ((vo **)&ad, byy size);
cudaMalloc ((vo **)&d_c, size);

a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints (b, N);
c = (int *)malloc(size);

Erik Saule (Par. Co.) CUDA basics 11/18/2018 35/ 44

<

NVIDIA

Addition with Blocks and Threads: main ()

cudaMemcpy (d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice);

add<<<N/THREADS_PER_BLOCK, THREADS PER BLOCK>>>(d_a, d b, d_c);

cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree (d_a); cudaFree(d_b); cudaFree(d_c);
eturn 0;

Erik Saule (Par. Co.) CUDA basics 11/18/2018 36 / 44

=

NVIDIA

Handling Arbitrary Vector Sizes

= Typical problems are not friendly multiples of vicckpin.x
= Avoid accessing beyond the end of the arrays:

__global b>id add(int *a, nt *b, nt *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)

cl[index] = al[index] + b[index];

= Update the kernel launch:
add<<< (N + M-1) / M,M>>>(d_a, d b, d_c, N);

Erik Saule (Par. Co.) CUDA basics 11/18/2018 37 / 44

.
Why Bother with Threads? >

NVIDIA

= Threads seem unnecessary
= They add a level of complexity
* What do we gain?

» Unlike parallel blocks, threads have mechanisms to:
= Communicate
= Synchronize

= To look closer, we need a new example...

We'll talk about why use thread later. For now, just trust that's useful to

have both.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 38 / 44

Outline

e Error Management

Erik Saule (Par. Co.) CUDA basics 11/18/2018 39 / 44

=

NVIDIA

Reporting Errors

= All CUDA API calls return an error code (cudakrror t)
= Errorin the API call itself
OR
= Errorin an earlier asynchronous operation (e.g. kernel)

= Get the error code for the last error:

cudaError_t cudaGetLastError (void)

= Get a string to describe the error:

char *cudaGetErrorString (cudaError_t)

printf ("$s\n", cudaGetErrorString(cudaGetLastError()));

Erik Saule (Par. Co.) CUDA basics 11/18/2018 40 / 44

In other words, all errors that happen on the GPU are usually silent.
Something bad happened and you are not notified through segfault or
anything.

Erik Saule (Par. Co.) CUDA basics 11/18/2018 41 / 44

Outline

@ Resources

Erik Saule (Par. Co.) CUDA basics 11/18/2018 42 / 44

Resources

OpenACC: http://www.openacc-standard.org/

OpenCL: https://www.khronos.org/opencl/

CUDA homepage: http://docs.nvidia.com/cuda/index.html

CUDA programming guide: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
CUDA runtime API: http://docs.nvidia.com/cuda/cuda-runtime-api/

CUDA best practice: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide

Sarah Tariq's slides:
http://on-demand.gputechconf.com/gtc-express/2011/presentations/GTC_Express_Sarah_Tariq_June2011.pdf

Jason Sanders and Edward Kandort. CUDA by example. Addison Wesley. 2011.

Erik Saule (Par. Co.) | 44

DA basics 11/18/2018 43

http://www.openacc-standard.org/
https://www.khronos.org/opencl/
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-runtime-api/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://on-demand.gputechconf.com/gtc-express/2011/presentations/GTC_Express_Sarah_Tariq_June2011.pdf

Note from a student

| found a very helpful tool in the cuda toolkit called cuda Memcheck.
compile with -lineinfo to get linenumbers in the output.

To run: cuda-memcheck ./binary options

It's that simple. It will detect memory leaks and is similar to valgrind in
output.

A link to the documentation:
http://docs.nvidia.com/cuda/cuda-memcheck/#axzz4fZdek1Vh

Erik Saule (Par. Co.) CUDA basics 11/18/2018 44 / 44

http://docs.nvidia.com/cuda/cuda-memcheck/#axzz4fZdek1Vh

	Why GPGPU?
	Principle
	Compilation
	Memory management
	Writing kernels : vector addition
	Error Management
	Resources

