
Threading in UNIX

Erik Saule
esaule@uncc.edu

Parallel Computing

09/12/2018

Erik Saule (Par Prog) pthreads 09/12/2018 1 / 27

Learning Outcomes

At the end of this lecture, you will be able to

Write a simple program that uses threads

Give one example of data race

Be able to achieve mutual exclusion

Give one code example that deadlocks

Name Coffman’s four conditions for deadlocking

Name one complex synchronization primitive

The assignment will ask you to

Write a static loop based scheduler

Write a dynamic loop based scheduler

Show overhead associated with thread management and
synchronization

Erik Saule (Par Prog) pthreads 09/12/2018 2 / 27

Learning Outcomes

At the end of this lecture, you will be able to

Write a simple program that uses threads

Give one example of data race

Be able to achieve mutual exclusion

Give one code example that deadlocks

Name Coffman’s four conditions for deadlocking

Name one complex synchronization primitive

The assignment will ask you to

Write a static loop based scheduler

Write a dynamic loop based scheduler

Show overhead associated with thread management and
synchronization

Erik Saule (Par Prog) pthreads 09/12/2018 2 / 27

Outline

1 Basic threading

2 Data races, mutual exclusion, and deadlocks

3 Assignment: implementing a loop scheduler in pthread

4 Advanced synchronization

5 Further

Erik Saule (Par Prog) pthreads 09/12/2018 3 / 27

How to make threads in UNIX?

In the olden times

Threads are nothing else than
processes that share memory

So you could create a segment
of shared memory with
shm open

Then different processes can
collaboratively work

Mostly used to synchronize
different programs nowadays

Threading libraries

Most typical one is pthreads in
UNIX

Gives you different execution
contexts within the same
process

Pretty much what you expect
from threads

(In Linux, they are implemented
as different linked processes so
they show up in top and ps)

Erik Saule (Par Prog) pthreads 09/12/2018 4 / 27

Hello World!
#include <stdio.h>

#include <pthread.h>

void* f(void* p) {

printf ("%s\n", p);

return NULL;

}

int main () {

pthread_t teach , student [50];

char pm[] = "Hello , my name is Erik.";

char sm[] = "Hello Erik!";

pthread_create (&teach , NULL , f, pm); // create a new thread

pthread_join (teach , NULL); //wait for completion

// create 50 threads

for (int i=0; i < 50; ++i)

pthread_create (& student[i], NULL , f, sm);

//wait for the 50 threads to complete

for (int i=0; i < 50; ++i)

pthread_join(student[i], NULL);

return 0;

}
Erik Saule (Par Prog) pthreads 09/12/2018 5 / 27

Interaction with the OS

Processor0

Core0
Th0 Th1

Core1
Th0 Th1

Core2
Th0 Th1

Core3
Th0 Th1

Core4
Th0 Th1

Core5
Th0 Th1

Processor1

Core0
Th0 Th1

Core1
Th0 Th1

Core2
Th0 Th1

Core3
Th0 Th1

Core4
Th0 Th1

Core5
Th0 Th1

Hardware

Processors

Cores

Physical threads

OS mapping

The OS creates a kernel thread
per physical thread

Posix threads are scheduled on
kernel threads (with time
sharing, context switching)

Restricted mapping

pthread setaffinity np to
restrict kernel threads mapping

Erik Saule (Par Prog) pthreads 09/12/2018 6 / 27

Interaction with the OS

Processor0

Core0
Th0 Th1

Core1
Th0 Th1

Core2
Th0 Th1

Core3
Th0 Th1

Core4
Th0 Th1

Core5
Th0 Th1

Processor1

Core0
Th0 Th1

Core1
Th0 Th1

Core2
Th0 Th1

Core3
Th0 Th1

Core4
Th0 Th1

Core5
Th0 Th1

Hardware

Processors

Cores

Physical threads

OS mapping

The OS creates a kernel thread
per physical thread

Posix threads are scheduled on
kernel threads (with time
sharing, context switching)

Restricted mapping

pthread setaffinity np to
restrict kernel threads mapping

Erik Saule (Par Prog) pthreads 09/12/2018 6 / 27

Interaction with the OS

Processor0

Core0
Th0 Th1

Core1
Th0 Th1

Core2
Th0 Th1

Core3
Th0 Th1

Core4
Th0 Th1

Core5
Th0 Th1

Processor1

Core0
Th0 Th1

Core1
Th0 Th1

Core2
Th0 Th1

Core3
Th0 Th1

Core4
Th0 Th1

Core5
Th0 Th1

Hardware

Processors

Cores

Physical threads

OS mapping

The OS creates a kernel thread
per physical thread

Posix threads are scheduled on
kernel threads (with time
sharing, context switching)

Restricted mapping

pthread setaffinity np to
restrict kernel threads mapping

Erik Saule (Par Prog) pthreads 09/12/2018 6 / 27

Outline

1 Basic threading

2 Data races, mutual exclusion, and deadlocks

3 Assignment: implementing a loop scheduler in pthread

4 Advanced synchronization

5 Further

Erik Saule (Par Prog) pthreads 09/12/2018 7 / 27

(Data) Race conditions

Race conditions

They happen when the timing of
concurrent operations can make the
program incorrect.
Not only in shared memory
programming, but also in distributed
memory, or electronics.

Data race

Race condition that happens in
shared memory programming when
two threads access the same variable
with reads and write without being
synchronized.

Erik Saule (Par Prog) pthreads 09/12/2018 8 / 27

Typical data race exemple

#include <stdio.h>

#include <pthread.h>

void* f(void* p) {

int* val = (int*) p;

for (int i=0; i< 100000; ++i)

*val += 1;

return NULL;

}

int main () {

pthread_t th[50];

int val = 0;

for (int i=0; i < 50; ++i)

pthread_create (&th[i], NULL , f, &val);

for (int i=0; i < 50; ++i)

pthread_join(th[i], NULL);

//this usually does not print 5 000 000

printf ("%d\n", val);

return 0;

}
Erik Saule (Par Prog) pthreads 09/12/2018 9 / 27

Mutual exclusion

Mutex

//To initialize

pthread mutex t mut;

pthread mutex init (&mut, NULL);

std::stack<int> s;

//To access the stack

pthread mutex lock (&mut);

s.push(2);

pthread mutex unlock (&mut);

//To free the mutex

pthread mutex destroy (&mut);

Only one thread can hold
the mutex at a time

Trying to lock a mutex that
is already locked pauses the
thread

If multiple threads wait on
a mutex, any of them could
be the next in line

(Check variants in manual)

Erik Saule (Par Prog) pthreads 09/12/2018 10 / 27

Mutexes can help prevent data race

#include <stdio.h>

#include <pthread.h>

pthread_mutex_t mut; //the software engineer in me cries

void* f(void* p) {

int* val = (int*) p;

for (int i=0; i< 100000; ++i) {

pthread_mutex_lock (&mut);

*val += 1;

pthread_mutex_unlock (&mut);

}

return NULL;

}

int main () {

pthread_t th [50];

int val = 0;

pthread_mutex_init (&mut , NULL);

for (int i=0; i < 50; ++i)

pthread_create (&th[i], NULL , f, &val);

for (int i=0; i < 50; ++i)

pthread_join(th[i], NULL);

pthread_mutex_destroy (&mut);

//this will print 5 000 000

printf ("%d\n", val);

return 0;

}

Erik Saule (Par Prog) pthreads 09/12/2018 11 / 27

Mutexes can cause Deadlocks

#include <stdio.h>

#include <pthread.h>

pthread_mutex_t mut1 , mut2;

void* f1(void* p) {

int* val = (int*) p;

for (int i=0; i< 100000; ++i) {

pthread_mutex_lock (&mut1);

pthread_mutex_lock (&mut2);

*val += 1;

pthread_mutex_unlock (&mut2);

pthread_mutex_unlock (&mut1);

}

return NULL;

}

void* f2(void* p) {

int* val = (int*) p;

for (int i=0; i< 100000; ++i) {

pthread_mutex_lock (&mut2);

pthread_mutex_lock (&mut1);

*val += 1;

pthread_mutex_unlock (&mut1);

pthread_mutex_unlock (&mut2);

}

return NULL;

}

int main () {

pthread_t th[2];

int val = 0;

pthread_mutex_init (&mut1 , NULL);

pthread_mutex_init (&mut2 , NULL);

pthread_create (&th[0], NULL , f1, &val);

pthread_create (&th[1], NULL , f2, &val);

for (int i=0; i < 2; ++i)

pthread_join(th[i], NULL);

printf ("%d\n", val);

pthread_mutex_destroy (&mut1);

pthread_mutex_destroy (&mut2);

return 0;

}

When in bad luck, it is possible that
thread 1 takes mut1 and thread 2
takes mut2.
Both threads are stuck waiting on
the mutex held by the other thread.

Erik Saule (Par Prog) pthreads 09/12/2018 12 / 27

Deadlock happens when all Coffman conditions are true

In a 1971 paper, Coffman et al. showed that four conditions are necessary
and sufficient for entering a deadlock:

Mutual Exclusion: Ressources are held exclusively by a thread

Hold and Wait: Threads hold a resource and wait on another one

No Preemption: Resources can only be released by the thread that
hold them

Circular wait: Threads are in a cycle where thread i waits on a
resource held by (i + 1)%n

Erik Saule (Par Prog) pthreads 09/12/2018 13 / 27

Common strategies to avoid deadlocks

Ordering locks

If locks are always taken in the
same order, then the Circular wait
condition can not be true.

Backing off

If threads eventually back off after
failing to hold a lock for some time,
then the Hold and Wait condition
can not be true.

Canceling Transactions

In relational databases, if two
transaction write tables in different
orders, one of the transaction might
be canceled, reverting the changes
caused by one. This makes the No
Preemption condition false.

Erik Saule (Par Prog) pthreads 09/12/2018 14 / 27

Thread safety and re-entrance

Thread safe

A function is thread safe if it can safely be called from multiple threads.

Re-entrance

A function is re-entrant if its execution can be interrupted, a different
thread can execute the same function, and the original can be resumed
safely.
Basically, if a function does not hold a global state, it is re-entrant.
Clearly a re-entrant function is thread-safe.

Not all library functions are thread safe. For instance, rand is not, but
rand r is re-entrant.

Erik Saule (Par Prog) pthreads 09/12/2018 15 / 27

Thread safety and re-entrance

Thread safe

A function is thread safe if it can safely be called from multiple threads.

Re-entrance

A function is re-entrant if its execution can be interrupted, a different
thread can execute the same function, and the original can be resumed
safely.
Basically, if a function does not hold a global state, it is re-entrant.
Clearly a re-entrant function is thread-safe.

Not all library functions are thread safe. For instance, rand is not, but
rand r is re-entrant.

Erik Saule (Par Prog) pthreads 09/12/2018 15 / 27

Outline

1 Basic threading

2 Data races, mutual exclusion, and deadlocks

3 Assignment: implementing a loop scheduler in pthread

4 Advanced synchronization

5 Further

Erik Saule (Par Prog) pthreads 09/12/2018 16 / 27

Assignment overview

Preliminary

Just a pthread hello world.
nbthreads threads which print “I am 1 of nbthreads”.

Static loop scheduler

Numerical integration (lock always vs lock once)

Static loop scheduler. Each thread does 1
nbthreads of the iterations.

Performance on cluster.

Study granularity and overhead.

Dynamic loop scheduler

Dynamic loop scheduler. Threads pick iterations in an FCFS way.

Performance on cluster.

Study granularity and overhead.

Erik Saule (Par Prog) pthreads 09/12/2018 17 / 27

Static loop scheduler for numerical integration

Idea

The N iterations of the numerical integration can be done independently.
Need to be careful about the reduction variable.

In practice, with n = 100 and nbthreads = 10

Thread 0 takes loop iterations [0; 10[.

Thread 1 takes loop iterations [10; 20[.

...

be careful of nbthreads > n or n%nbthreads! = 0

Race condition

iteration sync: the global sum variable is updated every iteration

thread sync: each thread maintain its own sum variable and update
the global sum only once.

Erik Saule (Par Prog) pthreads 09/12/2018 18 / 27

Dynamic loop scheduler for numerical integration

Idea

Do not pre-split the work. Each thread does what it can.
When a thread needs work, it checks whether the computation has ended.
If there work left, it takes a chunk of granularity iterations and do them.

In practice, with n = 80 and nbthreads = 3, granularity = 10
Thread 0 comes first and take loop iterations [0; 10[.

Thread 2 comes next takes loop iterations [10; 20[.

Thread 1 comes next takes loop iterations [20; 30[.

Thread 2 comes next takes loop iterations [30; 40[.

Thread 1 comes next takes loop iterations [50; 60[.

Thread 0 comes next takes loop iterations [70; 80[.

Thread 2 comes next and quits

Thread 1 comes next and quits

Thread 0 comes next and quits

Race condition

add chunk sync. which commits to the global sum after each chunk

Erik Saule (Par Prog) pthreads 09/12/2018 19 / 27

Outline

1 Basic threading

2 Data races, mutual exclusion, and deadlocks

3 Assignment: implementing a loop scheduler in pthread

4 Advanced synchronization

5 Further

Erik Saule (Par Prog) pthreads 09/12/2018 20 / 27

Locking variants

Mutex

Mutex are kernel space. The thread is unscheduled if the lock is not
available.

Spinlock

Spinlock are userspace. The thread enters a busy loop if the lock is not
available.

Futex

Spin lock for some time and then enter a kernel space wait. (This is what
you actually get in Linux when using a mutex.)

FIFO locks

Locks where the earliest thread to enter the lock is the first to be granted
access to the resource.

Erik Saule (Par Prog) pthreads 09/12/2018 21 / 27

RW lock

Principle

Consider the case where most of the threads will ever only read a
shared array

There is no reason to prevent them from reading concurrently.

For writing, mutual exclusion is necessary.

API

pthread rwlock init ()

pthread rwlock destroy ()

pthread rwlock rdlock ()

pthread rwlock wrlock ()

pthread rwlock unlock ()

Check the man pages for details

Erik Saule (Par Prog) pthreads 09/12/2018 22 / 27

Conditions

pthread cond

Allows a thread to wait for a
particular event to happen

a queue to not be empty

a queue to not be full

...

Usage

Paired with a mutex

pthread cond wait (cond, mutex);

waits on the condition to be
signaled
and releases the mutex
takes the mutex back when the
condition is signaled

pthread cond signal (cond);

wakes one (any) of the waiting
thread

pthread cond broadcast (cond);

wakes all of the waiting thread

Note that there is no “counter”,
signal does nothing if no threads
are waiting

Erik Saule (Par Prog) pthreads 09/12/2018 23 / 27

Playing ping-pong

pthread_mutex_t mut;

pthread_cond_t cond;

bool score , ping;

void* f1(void* p) {

unsigned int seed = 1;

pthread_mutex_lock (&mut);

while (!score) {

while (!ping) {

pthread_cond_wait (&cond , &mut);

}

if (!score){

printf("ping\n");

ping = !ping;

if (rand_r (&seed) % 17 == 0) {

printf ("score 1\n");

score = true;

}

pthread_cond_signal (&cond);

}

}

pthread_mutex_unlock (&mut);

return NULL;

}

void* f2(void* p) {

unsigned int seed = 2;

pthread_mutex_lock (&mut);

while (!score) {

while (ping) {

pthread_cond_wait (&cond , &mut);

}

if (!score){

printf("pong\n");

ping = !ping;

if (rand_r (&seed) % 17 == 0) {

printf ("score 2\n");

score = true;

}

pthread_cond_signal (&cond);

}

}

pthread_mutex_unlock (&mut);

return NULL;

}

Erik Saule (Par Prog) pthreads 09/12/2018 24 / 27

Outline

1 Basic threading

2 Data races, mutual exclusion, and deadlocks

3 Assignment: implementing a loop scheduler in pthread

4 Advanced synchronization

5 Further

Erik Saule (Par Prog) pthreads 09/12/2018 25 / 27

External

pthreads:

man -k pthread

D. Buttlar, J. Farrell, B. Nichols. Pthreads programming. O’Reilly. 1996

POSIX.1-2001.

A popular tutorial: https://computing.llnl.gov/tutorials/pthreads/

Deadlocks:

E. G. Coffman Jr., M. J. Elphick, A. Shoshani. System Deadlocks. Computing Surveys 1971.

Relevant Wikipedia articles:

https://en.wikipedia.org/wiki/Race_condition

https://en.wikipedia.org/wiki/Deadlock

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29

https://en.wikipedia.org/wiki/Reentrancy_%28computing%29

Threading in C++:

Since C++11: http://www.cplusplus.com/reference/multithreading/

Some other threading model:

user-threading in Marcel https://runtime.bordeaux.inria.fr/marcel/

Erik Saule (Par Prog) pthreads 09/12/2018 26 / 27

https://computing.llnl.gov/tutorials/pthreads/
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Reentrancy_%28computing%29
http://www.cplusplus.com/reference/multithreading/
https://runtime.bordeaux.inria.fr/marcel/

	Basic threading
	Data races, mutual exclusion, and deadlocks
	Assignment: implementing a loop scheduler in pthread
	Advanced synchronization
	Further

