
Experiences on Teaching Parallel and Distributed Computing for Undergraduates

Erik Saule
Computer Science

UNC Charlotte
Charlotte, NC, USA

Email: esaule@uncc.edu

Abstract—The recent increase in interest on big data and
data intensive computing makes it important for CS un-
dergraduate students to receive education in Parallel and
Distributed Computing. The increase in scope and popularity
of a CS education often causes the majority undergraduate
students to take a whole four year degree to really perceive
modern computing challenges; it therefore poses new challenges
in teaching parallel computing. At UNC Charlotte, the Parallel
and Distributed Computing class is a required class for the
Systems, Software, and Network concentration of the BS in
Computer Science. As such, it poses particular challenges
because the class sees high enrollment, a diverse body of student
and is the last opportunity to ensure basic computing skills as
all later classes are electives.

This paper presents the design choices of this class which
focuses on teaching parallelism as opposed to performance
through analysis of parallel algorithms, parallel programming
in different models, and scalability testing. The paper also
presents a set of scaffolded assignments that leverage a PBS
cluster for testing. We present feedback from teaching the class
during the Fall 2017 semester. In particular we introduced a
simple tool to help extracting dependencies on algorithms and
compute critical path. And we present student suggestions of
assignments that would lead to higher engagement.

Keywords-Parallel Computing; Undergraduate Education;
Scaffolded Assignments

I. INTRODUCTION

The rise of the Big Data era has increased the interest in
parallel computing and high performance computing. While
in the past only few scientists would run Big Compute jobs,
nowadays most science and business is actually done by
running either Big Compute or Big Data jobs. As such, the
interest in educating students to the usage and fundamentals
of parallel computing has increased. This drove the inclusion
of parallel computing topics in the 2013 ACM/IEEE-CS cur-
riculum guidelines for undergraduate CS degrees [TAI13].
Also the CDER center for parallel computing education
proposed a detailed curriculum for integrating parallel com-
puting earlier into undergraduate curriculum [NSF12].

Bringing parallel computing into the early years of a
bachelor curriculum is seen as a difficult problem. There
are few models on how to properly do the integration and
there are few examples in the community of how parallel
computing topics can be broken down in non-classical ways.
For many institutions, the instructors or early classes may

not be fully trained in parallel computing. Therefore there is
a need for good exemplar of how to teach parallel computing
and how to design good assignments.

This paper introduces the material used at UNC Charlotte
to teach ITCS 3145 Parallel and Distributed Computing.
While these topics are taught in a single junior level class,
the class serves as the last required classes for many
students. As such the class is designed to bring up to
speed students that are lagging behind, such as the students
that transferred from a different institution or the ones that
retained less knowledge than is ideal from previous classes.
Also the course comes after a combined data structure/al-
gorithm class and a combined operating system/networking
class. As such the algorithmic, low-level programming, and
system skills of the students are not fully fleshed out and
ITCS 3145 serves as a practical OS class.

Therefore, parts of this class could be used to integrate
parallel computing topics into an OS class or into an
algorithm class. Some parts could also be integrated earlier
into a CS1 class. The material provided to the students
during Fall 2017 for ITCS 3145 are available online 1 and
the full material is available by request. This paper describes
the rational upon which the class is built, how assignments
are scaffolded, and lessons learned from teaching the class
in Fall 2017.

Section II presents the typical population of students in
the CS degree at UNC Charlotte and explains how ITCS
3145 integrates in the curriculum and the development of the
knowledge and skills of the students. Section III details the
structure of the class and how the different parts articulate to
give the class a practical Operating System flavor. Section IV
talks about the rational in using a PBS cluster for teaching
the class and how the assignments are scaffolded as well as
the rational for the type of scaffolding provided. Section V
reflects on the class run in Fall 2017 and derives some insight
about how the class could be improved. In particular a piece
of software has been introduced to help teach dependency
graph representation and algorithm engineering to extract
more parallelism. Also students were encouraged to provide
assignment suggestion and a few engaging suggestions are
described. Section VI relates some previous works to our

1https://webpages.uncc.edu/esaule/classes/2017 08 ITCS3145

https://webpages.uncc.edu/esaule/classes/2017_08_ITCS3145

efforts. Section VII summarizes the contribution of the paper
and provides some directions for future efforts.

II. CONTEXT AND GOALS OF ITCS 3145

UNC Charlotte is an urban university and the largest in
the greater Charlotte region. The Bachelor of Science degree
in Computer Science is common to the entire College of
Computing and Informatics. There were over 1800 majors
in Computer Science at UNC Charlotte in Fall 2017. About
a quarter of the students transferred from a community
college. About 13% are African American, 7% are Hispanic,
and 17% are female. Over 80% of the students work full-
time or part-time.

All students in the Systems, Software and Network con-
centration are required to take ITCS 3145: Parallel and
Distributed Computing. Systems, Software and Network
is the most popular concentration which means that over
100 students take this class every year. This class is the
last required class for all the students of the concentra-
tion; all further classes are electives. As such this class is
tasked with making sure that outgoing students have solid
programming and systems skills. (An other required class
covers networking aspects.) Also this class comes after ITSC
3181 Computer Architecture and after ITSC 3146 Operating
Systems and Networking.

Because early classes are taught in Java, students enrolling
in ITCS 3145 Parallel and Distributed Computing often
only had a single class in C or C++; which means that
their low-level programming skills are basic. Also ITSC
3146 combines networking concepts with operating systems
concepts. So the students only have developed a basic
understanding of operating systems concepts and are still
uncomfortable with using UNIX systems in practice.

As such, this class is tasked with 1) improving low level
(operating system level) programming skills; 2) making sure
students can survive in a UNIX environment; 3) belaboring
concepts of programming abstraction; 4) introducing a par-
allel thinking mindset; 5) enabling the leveraging of parallel
computing resource for simple strategies.

In particular, this class is not an High Performance
Computing class where the finer details of code, algorithms,
and processors and buses will be discussed; these topics are
covered in a later elective class. This is also not a Parallel
Algorithms (PRAM like), or even a Distributed Systems
(consensus, election) class.

The author is not aware of a textbook that provides ready
to run lectures and assignments that would match these
objectives (and would be glad to have one). As such, the
class has been custom built with a set of lectures and
scaffolded assignments.

III. STRUCTURE OF ITCS 3145

To accomplish the goals of the class, the class has to be
assignment driven; so the students will do 9 assignments

in the span of 16 weeks. In-class time is set aside to talk
about the assignments in details and work through some of
the simpler problems. Content-wise, the class is structured
in four parts which are now described.

A. Getting Started

The first part is introductory and kick starts the students in
their programming and in the usage of the PBS cluster used
in the class. At that time, the students write a sequential
numerical integration code. This code will serve as an
example that will be followed in most of the class. Doing this
first part sequentially enables catching up students whose
C++ programming skills are not up to par; and students
who are not used to using UNIX systems. It also builds up
confidence in a simple code that will be made parallel later.

Using numerical integration as the first assignment is not
an arbitrary choice. It is a computation that most students
understand easily because they almost all have studied
calculus by the time they reach ITCS 3145. It is a kernel that
can easily be made more or less computationally expensive;
but more importantly it is a compute-bound kernel, rather
than a memory-bound kernel. Using a compute-bound kernel
removes problems of memory contention that could cause
speedup curves not to be linear and would trigger confusion
in the mind of students. Memory contention is a processor
design issue that is explored in detail in a later classes and
is only briefly discussed in the middle of ITCS 3145 when
memory bound kernel are used.

B. Algorithms in Parallel

The second part of the class is essentially an introduction
to parallel algorithms. In particular, it is about representation
of parallel algorithms. The students learn how to extract
tasks and dependencies from a piece of sequential code. This
is achieve by explicitly choosing tasks and analyzing read,
and write dependencies to the variables of the application.
Note that these steps are the same ones that would be
covered in a compiler class for code analysis and instruction
reordering. However it is unlikely students have taken a
compilation course at this point of their curriculum. But it
allows to give them an hint at the complexity of compilers.
A similar process is also used in OpenMP when using the
tasking clause depend.

Then tasks and dependencies can be analyzed to compute
the work, the width, and the critical path of an appli-
cation [BJK+95]. These metrics are popular in the field
as they are used extensively by software such as Intel
Cilk Plus [Int]. They enable discussing “how parallel” an
algorithm is; especially when the analysis of the algorithm
can be made for arbitrarily sized problems. This can help
students get a practical understanding of why some codes do
not scale and also serves as a reinforcement of Ahmdahl’s
law. The students also learn how to build a schedule out of a
dependency graph and how greedy algorithms such as List

Scheduling [Gra66] or LPT [Gra69] can be used, and are
used in practice.

Building dependency graph and schedule help students
understand that some codes are inherently more parallel than
others. More importantly, it gives the students the tools to
understand why a piece of code is not parallel. Often a
variable causes synchronization of many of the tasks. The
students can then be introduced to some techniques to make
algorithms more parallel, for instance by decoupling some of
the operations in a way that is similar to loop splitting. Tasks
that could happen in different orders but not at the same time
can be used to tie back to mutual exclusion many students
used in a previous operating system class. Reductions, divide
and conquer algorithms, dynamic programming are all good
examples to build the students’ skills.

C. Shared-Memory Programming

The third part of the class presents shared-memory pro-
gramming. Here we first present the pthread library. The
purpose of talking about pthread is to remove the “magi-
cal” aspect of parallel programming. Since all programming
models are essentially built upon pthread or a library
of the sort, students learn the system aspects that relate
to parallel computing. The students build loop schedulers
(both static and dynamic) using pthread primitives. They
use the numerical integration example to test their loop
schedulers. This enables discussions about the granularity
of parallel decomposition, but also locking granularity in the
reduction of the calculation and the related overheads. One
can also ask students to extract logs out of their scheduler
to introduce system instrumentation.

Then a higher level shared memory programming model
is introduced. OpenMP is a good candidate because of its
availability in most compiler tool-chains. Also OpenMP
supports both loop decomposition that the students built in
pthread, but also support task decomposition that map to
what the students learned in the algorithmic part of the class.
Presenting OpenMP enables to talk about middleware in
general and how compilers’ API can help exposing simpler
more abstract parallel programming interfaces. The students
write an OpenMP version of the numerical integration prob-
lem and reflect on the simplicity of the writing compared
to the pthread implementations. The existence of loop
interfaces and tasking interfaces in OpenMP also allows
to show tradeoffs between complexity of the programming
models, expressible algorithms, and performance obtained
using a single tool. This reduces confusions that would
be introduced by having the student use multiple parallel
programming middlewares. Also the simplicity of using
OpenMP compared to pthread enables more challenging
and realistic parallel computing problems such as parallel
sorting or dynamic programmings.

D. Distributed-Memory Programming

The fourth part of the class is about distributed-memory
computing. First, introducing explicitly communication cost
is necessary to make a theoretical difference with shared-
memory systems. This enables discussing different machine
topologies and algorithms for classic problems such as
reductions. Data distribution is emphasized using problems
such as stencils operations, and matrix multiplication.

Then, MPI is introduced in a fairly typical way. Starting
from point-to-point communication, the students will solve
the numerical integration problem using both a static par-
titioning and a dynamic partitioning by building a master-
worker model. This enables the student to observe speedups
that were not possible in the shared memory system. Then,
collectives are introduced and more advanced problems are
solved such as stencil and matrix multiplication.

Finally, Map Reduce operations [DG08] are introduced
using the MR-MPI library [PD11]. MR-MPI2 provides Map
Reduce features inside an MPI code. This new programming
model and execution environment provides an other example
of what middlewares can do to improve programmer produc-
tivity. At the same time, the students become familiar with
a programming model that is popular in the industry.

IV. PARALLEL COMPUTING ASSIGNMENTS AND
SCAFFOLDING

The core part of the ITCS 3145 class at UNC Charlotte
revolves around students figuring out assignments. Program-
ming exercises are often seen as way to engage students
more in parallel computing [Bog17]. As such, the archive
we released online contains the scaffolded assignments for
other instructors to use.

A. System

The assignments are all to be done in C or C++ and to be
run on a PBS cluster for testing. The university is running an
educational PBS cluster separate from the research cluster
in order to prevent educational users disrupting regular
research activities. It is indeed common that students run
code that crashes the head node of the cluster or bring
compute nodes down by over allocating memory. The cluster
is composed of 12 nodes, each equipped with 2 Intel Xeon
processors featuring 8 cores each; for a total of 16 cores per
node; and 128GB of memory. The nodes are interconnected
using InfiniBand technology. Two of the nodes are equipped
with an NVIDIA graphics card providing 4 programmable
CUDA devices across the cluster. To minimize management
overhead, the educational cluster uses the same software
stack as the research cluster, which provides a realistic
environment while consuming little additional manpower.

Pedagogically, having such a system enables students to
be exposed to a real cluster environment. This bolsters their

2available online at http://mapreduce.sandia.gov/

http://mapreduce.sandia.gov/

UNIX skills which are important in today’s industry. Also
having 16-core nodes enables studying complex algorithms
at a high core count. For instance, parallel prefix sum has
an efficiency of 1

2 which makes it hard to test and observe
practical speedup on a student laptop which often only has
one or two cores. Also, all students benchmarking their code
on the same machine enables the comparison of speedup that
they get without having to worry about discrepancies coming
from the system they are using. Also for the distributed-
memory part of the class, the machine is sufficient to solve
problems that do not fit in the memory of a single node and
to see speedup on simple problems.

The students are encouraged to solve first the assignments
on their own machine. An Ubuntu Virtual Machine is
provided to them with all the required software to run the
class: a compiler with OpenMP 4.5, an MPI library, and MR-
MPI. The students are encouraged to communicate code and
results between the cluster and their VM using git. This has
two advantages: 1) it teaches git to the students that have
not been exposed to it; 2) when a problem occurs, it enables
the student to point the instructor and Teaching Assistant to
a complete version of the code, rather than providing a code
snippet that may not exhibit the problems they are having.

While we understand that not all institutions have access
to such computing resources, computing centers have been
opening their clusters for educational purposes. Also, CDER
makes available a SLURM cluster for educational purposes3.

B. Scaffolding
The assignments themselves are scaffolded so that the

students can focus on the tasks that matter to their under-
standing of parallel computing rather than on the tasks that
are necessary and keep them busy but do not further their
parallel computing skills. The assignments define command
line parameters and output format. Often the answer to the
problem is to be written on stdout, while the time it
took to compute the answer is to be written on stderr.
This enables the scaffolding to provide a lot of help so
that the students only have to write the application code.
Benchmarking is done by scripts that are provided to them.
This frees the students from having to look deeply into
designing and scripting complex scalability experiments,
which is an error-prone and time consuming process (albeit
educational). And the students can focus purely on parallel
computing issues.

But more than just running the code, the scaffolding also
automatically plots the charts that are meaningful for the
students to look at. This also ensures that any student sees
all the effects that are to be seen on a particular problem.
Otherwise students might observe one of the strange effect,
assume that is all there is to see and move on.

Additionally, the scaffolding enables automatically testing
the codes for correctness. Provided computing resources are

3https://grid.cs.gsu.edu/∼tcpp/curriculum/?q=node/21615

limited, it is helpful to be able to check whether a code is
correct before a student runs a massive benchmark. Some of
the benchmarks can take a couple of hours to run, and since
the machine is small compared to the number of users it is
preferable to avoid running incorrect code. Indeed, 12 nodes
are supporting about 60 students in a typical semester. If
each students waste 2 hours of computation (and they often
waste more), it adds up to the equivalent of the cluster being
unavailable for 10 hours the week the assignments are due.

The assignment scaffoldings are built so that students
do not have access to some functions, they only receive a
static library that will be compiled against. It enables the
instructor to build functions that students can not change
(easily). In particular, for the numerical integration assign-
ment, the functions to be integrated are provided that way.
The functions take two parameters x where the function is
evaluated, and a parameter intensity which enables to
change how long it takes to evaluate the function. Providing
the function in a binary form rather than asking the students
to come up with them enables to write unit tests, and
to ensure that the implementation of intensity does not
get compiled out. Indeed depending how the feature is
implemented, the compiler could realize what is happening
and simply optimize out parts of the function, so having a
robust implementation is necessary.

Other use of static libraries as part of the scaffolding
enables to provide instances of problems for which the solu-
tion is known and easily checked. For instance, in a sorting
problem, giving a random permutation of all the integers
between 0 and n enables a simple test for correctness and
that the instance provided is not a worst case instance of the
tested algorithm. Choosing the tested instances also helps
with debugging codes. Picking the instance of a parallel
prefix sum to be 1,−1, 2,−2, 3,−3, . . . gives a very strong
structure to the solutions which helps figuring out quickly
where the students’ code are incorrect.

C. List of assignments

Assignment 1 is a purely sequential assignment where the
students learn to use the PBS cluster and solve the numerical
integration problem.

Assignment 2 is an dependency extraction assignment
where the student work through transform, reduce, find first,
prefix sum, and merge sort.

Assignment 3 is a pthread assignment where the students
implement a static and dynamic loop scheduler. The sched-
ulers are used to solve the numerical integration problem.

Assignment 4 makes the students use OpenMP parallel
loop construct to solve problems of reduction, numerical
integration, prefix sum, and merge sort.

Assignment 5 also uses OpenMP but this time uses the
tasking constructs to do reductions, merge sort, longest
common subsequence, and bubble sort.

https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21615

Assignment 6 is a distributed memory algorithm assign-
ment that makes the students think about data placement
and network topologies implication by looking at problems
of reductions, 1D heat equations, and matrix multiplication.

Assignment 7 uses MPI to perform numerical integration
using a static work partitioning and a master-worker model.

Assignment 8 looks at more complex MPI problems with
2D heat equations and matrix multiplication.

Assignment 9 is an MR-MPI assignment which makes the
students look at word counting.

V. LESSONS LEARNED THE HARD WAY

A. On parallel data structures

The first version of the class included a lecture re-
garding parallel data structures. That lecture covered the
basic aspects of tradeoffs between locking granularity and
performance and went through the details of lock-free and
wait-free data structures [FH07]. Understanding these more
advanced concepts requires understanding advanced system
issues such as instruction reordering by the compiler, out-
of-order execution of assembly instructions, and memory
barriers. These issues are just too complex for students to un-
derstand in a short amount of time. As such, covering lock-
free and wait-free algorithm is judged counter-productive
and should be reserved to a more advanced class.

B. On class management

Starting an assignment is typically hard for students. So
students often realize late the assignment requires some
preparation work that can not be slammed in an hour.
The basic strategy was to use in-class time to make sure
that students are properly set up. However, once students
are late, they tend to use in-class time to work on their
late assignments rather than on the assignment-of-the-day.
Accepting late assignment is useful to struggling students
and not accepting late assignment would mostly cause at-risk
students to fail. A strategy being tested is to make sure most
(if not all) assignments have a preliminary part which mostly
consists in getting the simplest use-case running and is due
the day after the lecture introduced it. Of course, no deadline
extension are given on preliminary. That way, students that
try to catch the preliminary deadline; even if they do not
make it; will realize that there is more than meet the eyes
and will be seeking help before the assignment deadline.

Teaching a large class that heavily relies on assignments
means that students will need additional help. Even with
two Teaching Assistants, students often will rely on email to
seek help. While personalized communication is sometimes
necessary, this model is not scalable on a 50+ student class.
The instructor gets swamped in many emails often relating
to the same topics. Now the class is taught in a way that
encourages asking questions on the class discussion board
(UNC Charlotte uses Canvas) and any questions asked by
email that does not pertain to a particular student or which

public discussion would violate FERPA laws is redirected
to the discussion board.

C. On scaffolding

Scaffolding is great... when it works. Indeed, students
really appreciated the scaffolding being able to tell them
whether their code returned the correct solutions and being
able to get plots automatically without having to think about
it too much. However, more attention to the design of the
scaffolding is necessary. In particular, it is necessary to
make sure that unit tests actually catch all incorrect codes.
If the test returns “OK”, students will assume the code is
good to be benchmarked. For instance, the testing method
was not checking the format of time and many students
added extra labels that broke the plotting scripts. Separating
benchmarking scripts from plotting scripts can also enable
student to only rerun the plotting part of the scaffolding
without having to rerun the entire code.

Students often run code on the head node of the cluster
which tends to crash the head node and makes the cluster
unusable. Introducing checks in the scaffolding that queries
the name of the machine and does not allow running on the
head node can prevent many cluster crashes.

D. Extracting parallelism with par graph lib

Extracting dependencies and exposing more parallelism is
definitely the hardest and most confusing part of the class
for students. More detailed slides during the lecture were
introduced to give a clear recipe of the steps to follow to
go from code to a dependency graph. An additional in-class
example is unrolled that scrupulously follow the steps of
the recipe. Also many students still have some difficulties
thinking recursively as the students at UNC Charlotte get
a combined data structure and algorithm class and may not
have enough experience with recursive algorithms.

To help students figuring out dependency structures, a
library was developed and introduced. par graph lib4 pro-
vides a simple interface to extend an existing sequential
code to define tasks. Essentially the developer is responsible
for defining where a task starts and what its name is. She
also chooses a processing time for the tasks and explicitly
declares variables accessed and whether the access is a Read,
Write, or ReadWrite access. Based on that information, the
software extracts the dependency graph. The graph is visu-
alized, using an interactive web visualization tool designed
for data structures classes called BRIDGES [BMG+16], and
highlights the critical path of the application. An example
of how the algorithm code looks like and the related visu-
alization is displayed in Figure 1.

It is expected that students will study by working out a
problem and confirming their intuition by implementing the
algorithm and inserting the instructions necessary to generate

4https://github.com/esaule/par graph lib

https://github.com/esaule/par_graph_lib

s t r i n g s t r e a m s s ;

f o r (i n t a =1; a <= m; ++a) {
f o r (i n t b =1; b <= n ; ++b){

s s . s t r (” ”) ; ss<<” (”<<a<<” , ”<<b<<”) ” ; newtask (s s . s t r ()) ;
s s . s t r (” ”) ; ss<<”X[”<<a−1<<”] ” ; r e a d (s s . s t r ()) ;
s s . s t r (” ”) ; ss<<”Y[”<<b−1<<”] ” ; r e a d (s s . s t r ()) ;
s s . s t r (” ”) ; ss<<”C[”<<a<<”] [”<<b<<”] ” ; w r i t e (s s . s t r ()) ;
s s . s t r (” ”) ; ss<<”C[”<<a−1<<”] [”<<b−1<<”] ” ; r e a d (s s . s t r ()) ;
s s . s t r (” ”) ; ss<<”C[”<<a<<”] [”<<b−1<<”] ” ; r e a d (s s . s t r ()) ;
s s . s t r (” ”) ; ss<<”C[”<<a−1<<”] [”<<b<<”] ” ; r e a d (s s . s t r ()) ;

i f (X[a−1] == Y[b−1]) {
C[a] [b] = C[a−1][b−1] + 1 ;

} e l s e {
C[a] [b] = max (C[a] [b−1] , C[a−1][b]) ;

}
}
}

(a) Sample code for solving the Longest Common Subsequence problem using dynamic
programming

(b) Sample visualization of the Longest Common
Subsequence problem

Figure 1. Sample code that show how a Longest Common Subsequence code is annotated and the graph generated by the BRIDGES. Only the
main part of the code that builds the dynamic programming matrix C by comparing string X and Y are shown. Complete code available at https:
//github.com/esaule/par graph lib/blob/master/samples/lcs.cpp. The visualization is available at http://bridges-cs.herokuapp.com/assignments/102/esaule

the graph. A few examples are also provided with the library
to be basic examples that the students can study.

E. On engaging assignments

While gathering feedback from students during the course,
it appeared that engagement was something that could be im-
proved. Indeed, many students reported that integrating the
same function multiple ways was not particularly engaging.

The students got offered the opportunity to propose their
own assignment for the class and to complete the assignment
they proposed. We now report on a few of the suggestions
that were submitted by students.

The first project is about implementing a textual similarity
query engine that interfaces with Twitter. Twitter exposes a
fairly simple API that enables implementing a Twitter bot
easily. The bot would listen to the message received by
the associated Twitter account which also follows particular
twitter handles or hashtags. Then the user could submit a
query to the bot by directly addressing the bot’s account.
The bot would reply by returning the tweet it stores that
is the closest to the query. The definition of closest could
be left for the students to figure out, in order to make the
assignment more exploratory. Or some simple measures such
as the cosine similarity of word occurence vectors could be
used if students need more directions. Students are at this
point unlikely to think of complex spatial algorithms such as
generalization of quad-trees. The expected implementation
would identify the tweet the most similar to the query by

using a simple loop over all the stored tweets. This could
be parallelized easily using an OpenMP for-loop construct.
Or a distributed memory assignment could be constructed
by distributing the stored tweets to different nodes.

Role playing games can have complex dice throwing
methods which can be hard to analyze on paper. An assign-
ment was proposed to obtain a probability density function
of a particular dice combination. Some games use dice of
different number of faces (most common dice have 6 faces,
but some 4 faces, 10 faces, or 20 faces dice are also often
used). Also some games have “exploding” dice which when
the die get its highest number is re-rolled and the number is
added. Similarly, rolling the lowest value on the die causes
the die to be re-rolled negatively. Meanwhile if a die gets
its highest value while an other die in the same roll get its
lowest value, neither dice “explodes”. This process is recur-
sive and there are many rare events that can occur. Obtaining
a probability distribution that accurately takes into account
rare events requires a high number of Monte-Carlo iterations
which makes the problem computationally expensive. On the
parallel computing side, this assignment poses problems of
generating independent random number in parallel and could
be done either in shared memory (rembering that rand is
not reentrant) or distributed memory.

Classifying text is a common Natural Language Process-
ing task for which a popular dataset has been made publicly

https://github.com/esaule/par_graph_lib/blob/master/samples/lcs.cpp
https://github.com/esaule/par_graph_lib/blob/master/samples/lcs.cpp
http://bridges-cs.herokuapp.com/assignments/102/esaule

available, the 20 newsgroup dataset 5, which contains about
20,000 texts extracted from 20 different newsgroups. A
simple way to cluster the texts can be obtained by first
computing the cosine similarity on word occurrence vector
of every pair of texts; and then running a traditional nearest
neighbor algorithm to derive clusters. The computation of
the similarity is likely expensive as it is quadratic in the num-
ber of texts and on the 20 newsgroup dataset requires com-
puting 200 million text cosine similarity of high-dimensional
sparse vectors. Of course, better algorithms exist [AK15],
but students are unlikely to know them. It is also easy to
scale the size of the problem by ignoring some of the texts.

Other interesting submissions of assignments but that
seemed harder to deploy in class included a raytracer,
computing covariance of the columns of a large database,
a sudoku solver, a password cracker, an image distance cal-
culation using color histograms, and collision computations
in a video game.

VI. RELATED WORKS

An instructor at TACC suggested MPI should be taught
through mental models [Eij16]. The idea is mostly that the
classical way of teaching MPI from point-to-point com-
munication and talking about deadlocks and inefficiencies
before talking about collective is an historically oriented
way of teaching MPI. But really, it makes more sense
to teach process symmetry first and introduce collective
as they maintain process symmetry. Then harder concepts
that break the symmetry can be introduced like rooted
collectives, and point-to-point communications. The rational
of [Eij16] appears to make sense and ITCS 3145 will
probably see its distributed memory part revamped to include
this development. It should be noted that MR-MPI does not
break process symmetry.

Rice University pioneered tools to teach parallel comput-
ing [GAC+17]. In particular their Habanero system provides
an auto-grader for parallel codes. Essentially, the students
are completely abstracted from the system which runs the
students code. Habanero checks correctness of the codes but
also automatically compute performance charts. The idea
is to provide automated feedback and grading of students
assignments. The Habanero system is certainly valuable,
however the system seems fairly complicated to deploy and
completely shields the user from system issues which may
not be best in all context. Yet the idea is laudable, and similar
ideas percolated in ITCS 3145 under the (simpler) form of
unit test and scaffolded benchmarks.

VII. CONCLUSION

Teaching parallel computing to undergraduate students
has shifted from being an arcane specialty class to being
required in many programs; with strides to include parallel

5http://qwone.com/∼jason/20Newsgroups/

computing constructs in classes as early as CS1. However a
common barrier to a broader adoption of parallel computing
in CS education is the lack of existing models and materials
for teaching such a class. In this paper, we present the
rational behind the design decision of ITCS 3145 which
serves as a practical OS class.

The class however is fairly modular and parts could
be reused in other (earlier) classes. Also to promote the
reuse of assignments across institution and to build better
assignments banks, we released the scaffolded assignment
as they were given to the students of ITCS 3145. The design
decisions behind the scaffolding are provided. And we cer-
tainly hope that other instructors will adopt our assignments
and will propose new assignments using a similar model. We
believe that making available more assignments and material
will contribute to a wider adoption of parallel computing in
various classes.

Running the class in Fall 2017 highlighted some short-
comings. In particular we plan on improving the commu-
nication of dependency graph extraction using our newly
designed library. Also we plan on improving the engagement
of students by investigating the use of more current assign-
ments; we received few suggestions from students that are
described in this paper.

ACKNOWLEDGMENT

The author would like to thank Abhishek Chandratre and
Vivek Soni who were the Teaching Assistants of the ITCS
3145 class during the Fall 2017 semester. This material
is based upon work supported by the National Science
Foundation under Grant CCF-1652442 and DUE-1726809.

REFERENCES

[AK15] David Anastasiu and George Karypis. L2knng: Fast
exact K-Nearest Neighbor graph construction with L2-
norm pruning. In Proceedings of the Conference
on Information and Knowledge Management (CIKM),
2015.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 207–216,
1995.

[BMG+16] David Burlinson, Mihai Mehedint, Chris Grafer,
Kalpathi R. Subramanian, Jamie Payton, Paula
Goolkasian, Michael Youngblood, and Robert Kosara.
BRIDGES: A system to enable creation of engaging
data structures assignments with real-world data and
visualizations. In Proceedings of the 47th ACM Tech-
nical Symposium on Computing Science Education
(SIGCSE), pages 18–23, 2016.

http://qwone.com/~jason/20Newsgroups/

[Bog17] Steven A. Bogaerts. One step at a time: Parallelism in
an introductory programming course. Journal of Par-
allel and Distributed Computing (JPDC), 105:4–17,
2017. Keeping up with Technology: Teaching Parallel,
Distributed and High-Performance Computing.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. Commu-
nication of the ACM, 51(1):107–113, January 2008.

[Eij16] V. Eijkhout. Teaching MPI from mental models. In
2016 Workshop on Education for High-Performance
Computing (EduHPC), pages 14–18, Nov 2016.

[FH07] Keir Fraser and Tim Harris. Concurrent programming
without locks. ACM Transactions on Computer Sys-
tems (TOCS), 25(2), May 2007.

[GAC+17] Max Grossman, Maha Aziz, Heng Chi, Anant Tibre-
wal, Shams Imam, and Vivek Sarkar. Pedagogy and
tools for teaching parallel computing at the sopho-
more undergraduate level. Journal of Parallel and
Distributed Computing (JPDC), 105:18–30, 2017.

[Gra66] Ronald L. Graham. Bounds for certain multipro-
cessing anomalies. Bell System Technical Journal,
45:1563–1581, 1966.

[Gra69] Ronald L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, March 1969.

[Int] Intel. Intel Cilk Plus. https://www.cilkplus.org/.

[NSF12] NSF/IEEE-TCPP Curriculum Working Group.
NSF/IEEE-TCPP curriculum initiative on parallel and
distributed computing core topics for undergraduates.
Technical report, IEEE-TCPP, 2012. available at
http://www.cs.gsu.edu/∼tcpp/curriculum/sites/default/
files/NSF-TCPP-curriculum-version1.pdf.

[PD11] Steven J. Plimpton and Karen D. Devine. MapReduce
in MPI for large-scale graph algorithms. Parallel
Computing (ParCo), 37(9):610–632, September 2011.

[TAI13] The Joint Task Force on Computing Curricula, ACM,
and IEEE Computer Society. Computer science
2013: Curriculum guidelines for undergraduate pro-
grams in computer science. Technical report, ACM,
2013. available at https://www.acm.org/education/

CS2013-final-report.pdf.

http://www.cs.gsu.edu/~tcpp/curriculum/sites/default/files/NSF-TCPP-curriculum-version1.pdf
http://www.cs.gsu.edu/~tcpp/curriculum/sites/default/files/NSF-TCPP-curriculum-version1.pdf
https://www.acm.org/education/CS2013-final-report.pdf
https://www.acm.org/education/CS2013-final-report.pdf

	Introduction
	Context and Goals of ITCS 3145
	Structure of ITCS 3145
	Getting Started
	Algorithms in Parallel
	Shared-Memory Programming
	Distributed-Memory Programming

	Parallel computing assignments and scaffolding
	System
	Scaffolding
	List of assignments

	Lessons Learned the Hard Way
	On parallel data structures
	On class management
	On scaffolding
	Extracting parallelism with par_graph_lib
	On engaging assignments

	Related Works
	Conclusion
	References

