
An Early Evaluation of the Scalability of Graph Algorithms on the Intel MIC
Architecture

Erik Saule∗ and Ümit V. Çatalyürek∗†
∗ Department of Biomedical Informatics

†Department of Electrical and Computer Engineering
The Ohio State University

Email: {esaule,umit}@bmi.osu.edu

Abstract—Graph algorithms are notorious for not getting
good speedup on parallel architectures. These algorithms tend
to suffer from irregular dependencies and a high synchroniza-
tion cost that prevent an efficient execution on distributed mem-
ory machines. Hence such algorithms are mostly parallelized on
shared memory machines. However, current commodity shared
memory machines do not typically offer enough parallelism
to process these problems. In this paper, we are presenting
an early investigation of the scalability of such algorithms on
Intel’s upcoming Many Integrated Core (Intel MIC) architec-
ture which, when it will be released in 2012, is expected to
provide more than 50 physical cores with SMT capability.
The Intel MIC architecture can be programmed through
many programming models, here we investigate the three most
popular of these models namely OpenMP, Cilk Plus and Intel’s
TBB. We present scalability results of a parallel graph coloring
algorithm, three variations of a breadth-first search algorithm
and a microbenchmark for irregular computations using these
three programming models. Our results on a prototype board
show that the multi-threaded architecture of Intel MIC can be
effectively used for hiding latencies in irregular applications to
achieve almost perfect speedup.

Keywords-Graph algorithm; unstructured irregular compu-
tation; scalability; multi-threaded architectures; graph color-
ing; breadth-first search

I. INTRODUCTION

The Intel Many Integrated Core (Intel MIC) architecture
is Intel’s latest design targeted for processing highly parallel
workloads. Built on simple x86 cores, the design allows to
use standard, existing programming tools and methods. The
current prototype Intel MIC cards, codenamed Knights Ferry
(KNF), provides in a single chip up to 32 cores with 4-way
SMT, where each core features 512 bit-wide SIMD registers.
The chip also includes coherent L1 and L2 caches and the
inter-processor network is a bidirectional ring. The final
commercial design, codenamed Knights Corner, will feature
more than 50 cores which, undoubtedly, will make the Intel
MIC architecture a very attractive component for traditional
high performance computing (HPC) environments. The com-
putational kernels of many traditional HPC applications
have usually regular dependencies, and can be vectorized
very easily, which will be an ideal fit for the Intel MIC
architecture. One can expect that in the following years we

will see many study dedicated to the use the Intel MIC
architecture for such regular numerical computation.

However, in this work, our focus will be irregular appli-
cations, in particular we will investigate the scalability of
shared-memory graph algorithms on the Intel MIC architec-
ture. Graph algorithms are notorious for being hard to effi-
ciently parallelize on due to their irregular dependencies [1].
Here, we investigate the scalability of two important graph
algorithms, namely graph coloring and breadth-first search,
and a microbenchmark for further investigating the interplay
of SMT, arithmetic unit and memory system on a prototype
of the Intel MIC architecture.

Graph coloring is a combinatorial problem which consists
in partitioning a graph in a minimum number of independent
sets. This problem has numerous applications, the most
known use in parallel computing is to represent the tasks of a
computation as the vertices of a graph, and an edge connects
two vertices if these two vertices cannot be computed
simultaneously [2]. Finding a coloring of this graph allows
to partition the tasks into sets that can be safely computed
in parallel. Minimizing the number of colors decreases
the number of synchronization points in the computation
and increases the efficiency of the parallel platform. Other
applications of graph coloring appear in automatic differen-
tiation [3] and parallel numerical computation [4] A variant
of coloring called distance-2 coloring has many applications
including some in the compression of Jacobian and Hessian
matrices for sparse linear algebra [3].

Breadth-first search (BFS) is an archetypical graph traver-
sal technique which enumerates the vertices of the graph
in the order of their “distance” from a source vertex. BFS
implicitly computes shortest paths from a source vertex
and is a generic kernel many algorithms are based on [5],
including computationally expensive centrality measures [6].
Computing BFS in parallel is known to be a difficult
challenge, which is why it is one of the reference graph
algorithm of the Graph 500 benchmark1.

Both coloring and BFS kernels can be classified as
memory-intesive, since there is little to no computation

1http://www.graph500.org/

http://www.graph500.org/

in these kernels. Not all irregular applications are free of
floating-point computations. For example, in simulations that
use unstructured mesh computations [7], dependencies on
neighboring mesh elements make the structure of compu-
tations irregular. That is, similar to graph kernels, in these
applications visiting neighbor elements are required and such
visits involve some additional floating-point computations.
Hence in such irregular applications, the computation to
communication ratio could be significantly different. We
have implemented a simple microbenchmark to investigate
the effects of the computation to communication ratio in
irregular applications.

These three kernels cover a wide range of irregular appli-
cations. Therefore we believe they are representative of the
performance we could achieve on any irregular application
using an Intel MIC coprocessor. In this paper, we investigate
for each of these kernels at least three implementations
using different algorithms and using different programming
models, namely OpenMP, Cilk Plus and Intel’s TBB. Our
goals in this work are to

• evaluate development efforts of graph algorithms in
three different programming models: OpenMP, Cilk
Plus and TBB,

• investigate the ease of porting applications to Intel MIC,
• evaluate the performance of the runtime engines that

support the three programming models we investigate,
• evaluate the scalability performance of graph algo-

rithms on the Intel MIC architecture,
• investigate algorithm engineering required to optimize

algorithms to scale beyond the parallelism provided by
current CPU architectures.

Our findings are that there is little effort required to
port a code from regular CPUs to Intel MIC and that
the obtained scalability of an algorithm on Intel MIC is
derived from the scalability of the application on CPUs.
We report linear speedup up to the maximum number of
threads on graph coloring when the memory subsystem is
stressed, thanks to the overlapping of memory latency by
the SMT. For high computation to communication ratio,
the irregular computation kernel displays linear speedups
up to the number of cores, and the speedup up continues
to increase when more that one thread per core is used,
indicating the overlapping of floating point computation and
memory transfers by the SMT.

On BFS, our investigation also led us to develop a more
realistic performance model for the BFS algorithm, as well
as a novel reengineering of the algorithm that uses block-
accessed queues. We report, although sub-linear, a speedup
that matches the proposed performance model. In other
words, the execution of our new algorithm on Intel MIC
uses all the parallelism the algorithm can offer.

II. PROGRAMMING FRAMEWORKS

A. OpenMP

OpenMP2 is an API that supports multi-platform shared
memory parallel programming in C, C++ and Fortran. It
consists of a set of compiler directives and library routines,
where runtime behavior can be controlled by environment
variables. Compiler directives are used to annotate loop
bodies and sections of the codes for parallel execution
and marking variables as local, or shared (global). Some
constructs exist for critical sections, declaring completely
independent tasks, or doing reductions on variables.

When a for loop is declared to be parallel, the iterations of
the loop are executed concurrently. The iterations of the loop
can be allocated to the working threads according to three
scheduling policies: static, dynamic, and guided. In static
scheduling, the iterations are either partitioned in as many
intervals as threads or partitioned in chunks which are allo-
cated to the threads in a round-robin fashion. The dynamic
scheduling partitions the iterations in chunks, where chunks
are dynamically allocated to the threads using a First-Come
First-Serve policy. Finally, the guided scheduling policy tries
to reduce the scheduling overhead by allocating first a large
amount of work to each thread and geometrically decreases
the amount of work allocated to the thread (up to a given
minimum chunk size) in order to optimize the load balance.

B. Cilk Plus

Cilk Plus3 is an Intel derivative of the Cilk C extension
from MIT [8]. The core programming model of Cilk Plus
follows the asynchronous function call semantic. Basically,
function calls can be tagged with the Cilk spawn keyword
that indicates that the function can be executed concurrently
to the current function. A function can wait for the com-
pletion of all the functions it spawned using the Cilk sync
keyword. Cilk allows to easily leverage nested parallelism,
which is only a recent addition to the OpenMP standard and
often reported to perform poorly.

The tasks are executed by the runtime system within a
work-stealing framework. Cilk uses a double ended queue
per thread to keep track of the tasks to execute and uses it
as a stack during regular operations conserving a sequential
semantic. When a thread runs out of task, it steals the
deepest half of the stack of another (randomly selected)
thread. This scheduling policy has been shown multiple
times to provide close to optimal load balance [8], [9], [10].

Cilk Plus provides more constructs than the original Cilk.
It allows for instance to easily execute a for-loop in parallel
using a recursive task decomposition, through the Cilk for
construct. It also provides data parallel operations on regular

2http://openmp.org/wp/
3http://software.intel.com/en-us/articles/intel-cilk-plus/

http://openmp.org/wp/
http://software.intel.com/en-us/articles/intel-cilk-plus/

C or C++ arrays, either by the use of array notation4,
intrinsic functions or user defined elemental functions.

All the variables declared inside a scope are local to that
thread, while all the other ones might be shared with other
thread. Thread Local Storage and reductions are performed
through holders and reducers [11]. A user can define her
own Thread Local Variable by implementing a monoid
which allows to define what should happen during a steal
and a reduce operations.

C. Threading Building Blocks

Intel Threading Building Blocks (TBB) is a versatile par-
allel programming framework which contains tools such as
scalable memory allocators, cache aligned arrays, abstraction
for atomic operations, thread safe containers, and so on. But
TBB is mainly useful for its parallel constructs which are
typically executed using a work-stealing framework.

The flow graph construct allows to define tasks that are
repeatedly executed by taking some data as an input and
producing an output. It allows to easily set up a pipeline of
tasks that perform complex tasks such as, typically, video
compression, graphical rendering, and data processing.

The other constructs take splitable objects as parameter
which represents some parts of the work which can com-
puted and eventually partitioned in to two. In particular,
the parallel for construct takes as parameter a range and
a partitioning policy. The policy is applied to cut the range
in small parts which are executed. Notice that the partitioner
is inside the scheduling loop and can then take runtime
decision.

Three partitioners are natively available in TBB. The
simple partitioner recursively divides the range until a given
size is reached. In a way, the simple partitioner is similar
to the dynamic scheduling policy of OpenMP. The auto
partitioner uses the work stealing events to decide whether
to split a range or not. Basically, it creates some subranges
first and subdivide a range further only when it gets stolen.
Finally, the affinity partitioner tries to allocate iterations
of a range to maximize cache usage by trying to allocate
consecutive iterations to the same thread. If the same affinity
partitioner is used on multiple loops, it tries to allocate
the iterations to the thread that executed them during the
previous loop.

III. ALGORITHMS

A. Graph Coloring

The distance-1 coloring problem is formally defined as
follows. Let G = (V,E) be a graph with |V | vertices and
|E| edges. The set of neighbors of a vertex v is adj(v); its
cardinality, also called the degree of v, is δv . The degree
of the vertex having the most neighbor is ∆ = maxv δv . A
coloring C : V → N is a function that maps each vertex of

4such as w[:] = a*x[:]+b*y[:]

the graph to a color (represented by an integer), such that
two adjacent vertices have different colors, i.e., ∀(u, v) ∈
E,C(u) 6= C(v). Without loss of generality, the number of
colors used is maxu∈V C(u). The optimization problem at
hand is to find a coloring with as few colors as possible and
is NP-Hard for arbitrary graphs [12]. Recently, it has been
shown that, for all ε > 0, it is NP-Hard to approximate the
graph coloring problem within |V |1−ε [13].

Despite the pessimistic theoretical results and the exis-
tence of more complicated algorithms, for many graphs
that arise in practice, solutions that are provably optimal
or near optimal can be obtained using a simple greedy
algorithm [14]. In this algorithm, the vertices of the graph
are visited in some order and the smallest permissible color
at each iteration is assigned to the vertex. The pseudocode
of this technique is presented in Algorithm 1. Choosing the
smallest permissible color is known as the First Fit strategy.
This simple algorithm has two nice properties. First, for any
ordering of the vertices, it produces a coloring with at most
1 + ∆ colors. Second, for some orderings of the vertices it
will produce an optimal coloring [15].

Algorithm 1: SEQGREEDYCOLORING

Data: G = (V,E)
maxcolor ← 1
for each v ∈ V do

for each w ∈ adj (v) do
forbiddenColors[color[w]] ← v

color[v]← min{i > 0 : forbiddenColors[i] 6= v}
if color[v] > maxcolor then

maxcolor ← color[v]

return maxcolor

Although the simple greedy algorithm is very effective,
it is also very sequential in nature. Gebremedhin and
Manne [16] proposed speculation as an alternative strategy
for coping with this problem. The main idea is to specula-
tively color as many vertices as possible concurrently, ten-
tatively tolerating potential conflicts, and detect and resolve
conflicts afterwards. In their basic shared-memory algorithm
while the coloring and the conflict detection are done in
parallel, the conflict resolution is done sequentially. Bozdağ
et al. [2] extended the algorithm in [16] to make it suitable
for and well-performing on distributed memory architec-
tures. One of the extensions was replacing the sequential
recoloring phase with a parallel iterative procedure. Later,
Çatalyürek et al. [17] presented a careful implementation of
the coloring algorithm on various multi-threaded architec-
tures, that include a 128-processor Cray XMT, a 16-core
Sun Niagara 2, and an 8-core Intel Nehalem system. In
this paper, we use the OpenMP implementation of Iterative
Parallel Greedy Coloring algorithm from that work [17].
We also developed Cilk Plus and TBB implementations of

the same algorithm for comparison of the runtime systems
of these three programming models. The pseudocodes of
the algorithms are given in Algorithms 2–4. The graph is
traversed at least twice: once for coloring and once for
detecting eventual conflicts, hence the potential gain by
using a second execution unit may not be fully realized due
to this additional conflict resolution phase.

Algorithm 2: PARITERATIVECOLORING

Data: G = (V,E)
Visit ← V
color[v]← 0 for v ∈ V
while Visit 6= ∅ do

maxcolor ← PARTENTATIVECOLORING(G, Visit, color)
Visit ← PARDETECTCONFLICT(G, Visit, color)

return maxcolor, color

Algorithm 3: PARTENTATIVECOLORING

Data: G = (V,E), Visit ⊂ V , color[1 : |V |]
maxcolor ← 1
localMC ← 1
for each v ∈ Visit in parallel do

for each w ∈ adj (v) do
localFC[color[w]] ← v

color[v]← min{i > 0 : localFC[i] 6= v}
if color[v] > localMC then

localMC ← color[v]

maxcolor ← Reduce(max) localMC
return maxcolor

Algorithm 4: PARDETECTCONFLICT

Data: G = (V,E), Visit ⊂ V , color[1 : |V |]
Conflict ← ∅
for each v ∈ Visit in parallel do

for each w ∈ adj (v) do
if color[v] = color[w] then

if v < w then
atomic Conflict ← Conflict ∪{v}

return Conflict

B. Irregular Computation Microbenchmark

Our irregular computation microbenchmark is based on a
simple traversal of the computational dependency graph. In
the computational dependency graph, each vertex represents
an atomic task (such as mesh element update) and its
adjacency represents the dependencies to its “neighbor” ele-
ments. In our microbenchmark, each vertex of the graph has
some state. During the computation, the state of each vertex
is updated based on the state of its neighbors. Although in
real life applications computations might involve complex

functions, since we are only interested to investigate effects
of the interplay between memory system and CPU, we will
use a simple loop over neighbors with varying intensity, to
parametrize the computation to communication ratio. That is,
we implemented a simple microbenchmark kernel where the
state of a vertex is a double precision floating point and we
simply average the state of the neighbors. In order to see the
effect of the amount of computation carried, we will perform
this iteration multiple (iter) times. Algorithm 5 shows the
pseudocode of our microbenchmark kernel. Notice that this
algorithm is a reasonable abstraction of a single iteration
of algorithms such as Page Rank or Heat Equation solvers
and has data dependencies similar to a sparse matrix vector
multiplication.

Algorithm 5: IRREGULARCOMPUTATION

Data: G = (V,E), V isit ⊂ V , state[1 : |V |]
for each v ∈ V in parallel do

for i = 0; i < iter; i++ do
sum ← state[v]
for each w ∈ adj (v) do

sum ← sum + state[w]

state[v] ← sum
|adj(v)+1|

C. Parallel Breadth-First Search

The sequential BFS algorithm is a simple, yet archetypical
graph search algorithm [5]. Many important graph kernels
uses ideas similar to BFS. It consists in enumerating the
vertices of a graph in their order of distance to a reference
vertex, also known as source vertex. In a sequential setting,
BFS is implemented by setting the level of the reference
vertex to one and adding the vertex to a First In First Out
(FIFO) queue. Then the algorithm iterates over the queue,
and for each extracted vertex, it enumerates the neighbors
and, if they have not been seen yet, set their level and add
them to the queue. Algorithm 6 shows the pseudocode of
sequential BFS.

Algorithm 6: SEQBREADTHFIRSTSEARCH

Data: G = (V,E), source ∈ V
for v ∈ V do

bfs[v] ← −1

bfs[source] ← 0
FIFO.push(source)
while ! FIFO.empty() do

v ← FIFO.pop()
for each w ∈ adj (v) do

if bfs[w] = −1 then
bfs[w] ← bfs[v] + 1
FIFO.push(w)

return bfs

One of the possible ways to parallelize BFS is to iterate
over the levels in multiple synchronous steps. This gives us
a layered parallel BFS algorithm which have been exploited
in both distributed memory [18] and in shared memory [19],
[20]. Algorithm 7 presents a simple generic pseudocode.
At each step, all the vertices that belong to one level are
considered. The level of all the neighbors of the considered
vertices that have never been seen before are set to the next
level and are added to the set of vertices to be considered at
the next level. Notice that the layered structured of the BFS
allows to determine the level of w without having to read
the level of v avoiding some memory accesses.

Algorithm 7: PARLAYEREDBFS
Data: G = (V,E), source ∈ V
for v ∈ V in parallel do

bfs[v] ← −1

bfs[source] ← 0
cur.add(source)
level ← 1
while ! cur.empty() do

for v ∈ cur in parallel do
for each w ∈ adj (v) in parallel do

if bfs[w] = −1 then
bfs[w] ← level
uniquely next.add(w)

SWAP (cur, next)
level ← level + 1

return bfs

Ideally, one want the addition of a vertex to the next set to
be done so that a given vertex appears only once in the set to
avoid traversing that vertex multiple time. There are mainly
two possible ways of ensuring that property, either the access
to bfs are done atomically, or the data structure of next
avoid duplicates. Both operations are typically expensive.
Leiserson and Schardl [20] noticed that the race condition
is unlikely and benign. Indeed, two threads can modify the
bfs array concurrently, but whichever wins the race leads to
the same values in memory. Two threads adding the same
vertex to next is also benign. Redundant computations will
be carried at the next level, but the algorithm stays valid.
Moreover, the excessive computations most likely do not
snowball. That is, in a shared memory setting, even if a
vertex is visited by two (or more) threads in the next level of
BFS, it is very unlikely that their neighbors will be added to
queue multiple times, which could only happen when there is
a race condition when their levels are checked before adding
them to the queue. In our work, we have also observed
experimentally that the redundant computation time is easily
amortized by the savings from the elimination of additional
synchronization (see Section V).

The performance of the BFS algorithm drastically
depends on the structure of the graph. In an extreme case,

consider a graph that is a very long chain, the layered BFS
algorithm will not be able expose any parallelism if we
start searching from one end of the graph. There are two
sources of parallelism in this algorithm, for a given level,
the vertices can be traversed in parallel, and for a given
vertex, its neighbors can be traversed in parallel. In many
scalable implementations (and all the ones we consider),
the parallel execution is organized in blocks of vertices
within a given level, since a finer parallelism will induce a
high scheduling overhead.

To understand these two phenomena, we propose a simple
model of the layered BFS algorithm. The computations are
decomposed in L synchronized parallel steps, one step for
each level of the BFS. There are xl vertices to visit in the lth
level of the BFS. We assume the computation is performed
by t threads using blocks of vertices of size b. We make
the following five (unrealistic) assumptions: each vertex is
processed in the same time, there are no cache effects,
processing threads are completely independent, there is no
scheduling or synchronization overhead. The computation
time of level l is then: c(l) = xl if xl < b and c(l) = dxl

tb e∗b
otherwise. This reflects that if there is less than one block
of work a single thread will execute it. If there is more
than one block, multiple threads will execute them in dxl

tb e
rounds, each of them taking b time units. For a given block
size, the achievable speedup is computed as

∑L
l=1 xl∑L
l=1 c(l)

.

IV. IMPLEMENTATION

Programming for Intel MIC is done similarly to pro-
gramming for a regular CPU. Actually all the codes we
developed can either be compiled for Intel MIC or for a
regular x86 CPU architecture. The only difference is one
line of code annotation that expresses that a given block
should be executed on the Intel MIC coprocessor, with the
list of variables that should be copied onto the memory of
the coprocessor. Below we will describe the implementation
details of our graph algorithms using the three programming
models we have described in Section II.

A. Graph Coloring

For the graph coloring problem, we will examine three
different implementations of the parallel iterative graph col-
oring algorithm given in Algorithm 2–4, using the selected
three programming models. We would like to note that,
we do not claim that this is the best algorithm for all
three programming models, and indeed, our algorithm had
been originally developed for OpenMP type of parallelism.
Implementations using different programing models will
enable us to investigate the performance of the runtime
systems supporting these programing models.

In our algorithm there are four central issues that need to
be addressed: execution of the two for loops in parallel,
accessing the localFC, reducing maxcolor and properly

implementing the Visit/Conflict data structure. For the last
one, we simply use two arrays of size |V | and since
the number of conflicting vertices is usually low, we use
an atomic fetch and add to obtain a unique index in the
Conflict array. We will discuss how we handle the other
three in each programming model below.

1) OpenMP: Both for loops are executed using the
parallel for construct of OpenMP. The parallel for can be
executed with different scheduling policies and chunk size
(see Section II-A), leaving multiple variant to test for.

In the tentative coloring, the localFC are stored contigu-
ously in memory (but without sharing a cache line). At
the beginning of the parallel section, each thread obtains
a pointer on a different localFC using their thread IDs as
an offset.

At the time the code was written, the OpenMP 3.0
standard in C and C++ does not provide a max reducing
operation as it does in Fortran5. So the computation of the
number of colors is performed manually by having each
thread maintain a local maximum (using the same indexing
technique used for localFC). The values are reduced at the
end of the parallel section by the main thread.

2) Cilk Plus: The Cilk Plus version of the coloring code
uses the Cilk for construct to create parallelism. Given an
interval, the construct recursively spawns two tasks that
process half the iterations of the loop until a given chunk
size is obtained. By default Cilk Plus sets the chunk size
so that the number of tasks is proportional to the number
of threads. This rule leads to a good load balance in many
cases. However, one can set the granularity size manually.

Obtaining a localFC array can be done in two different
ways. The first one is a similar to the OpenMP implemen-
tation. It is possible, but discouraged, to obtain a unique
worker ID using cilkrts get worker number()but that ID
can be much larger than the number of threads involved
in the computation. An upper bound on the worker IDs is
exposed but using that number results in initializing more
memory necessary.

The Cilk Plus way of obtaining a localFC array is to
use a view which are the building block behind reducers.
Basically, a view is a thread local variable that is initialized
for a thread at the time it uses it. The local variables are
reduced automatically during merge operations. A program
can define it own initialization and reduction operation, al-
lowing to allocate memory on demand. The drawback of this
approach compared to the one using worker number is that
memory is allocated and initialized during the processing of
the computation, potentially increasing load imbalance. This
variant will be referred to as the variant with a holder.

The computation of maxcolor is performed using a re-
ducer max object. Intuitively, reducer objects store a local

5The OpenMP 3.1 standard accepted in July 2011 now provides such a
reduction.

state of a given variable and can only be accessed using
a write only semantic. A local copy of the variable is
created during steal operations and the copies are reduced
during merge operations. The reduce operation should allow
to obtain a final result identical to a sequential execution.
However it is not always possible if the operations are not
bit-wise commutative (such as floating point operations)

3) TBB: The TBB version of the algorithm uses the
parallel for construct. This construct is a function call that
takes as parameter three objects. The first one defines the
range of iterations to process and how they can be split;
here we use a block range that allows to set a chunk size
under which TBB will not partition further. The second one
is a functor (an object function) that will be applied on
partitioned ranges which in our case is basically the loop
body. The last one is the partitioning policy which is set to
one of the scheduling policy described in Section II-C. This
leads to three different variants of our TBB implementation.

TBB does not expose thread number to the developer. It
is therefore impossible to access the localFC array as it is
done in Cilk Plus and OpenMP using thread IDs. (Though
there are some other workarounds to create thread-level
storage which we exploited in the BFS code). However, TBB
provides a construct similar to views in Cilk which are called
enumerable thread specific. At most one object per thread
is created on demand and we can obtain a localFC using a
type that dynamically allocates the right amount of memory.

The TBB way of performing reduction (for maxColor)
is to use the combinable construct. When a thread has a
combinable object, it obtains its own copy of the variable.
At the end of the parallel execution, one can call the combine
function to perform an aggregation of the different values by
passing a binary functor as a parameter.

B. Irregular Computation

The irregular computation is simple kernel with just a
for loop that needs to be parallelized. We implemented this
simple kernel using the same techniques used for the graph
coloring algorithm.

C. Breadth-First Search

For BFS, to highlight the importance of algorithm and
data structure for scalability, instead of implementing the
same algorithm on different programing models, we used
three variants of the BFS algorithm. At the high level, all use
the parallel layered BFS algorithm described in Algorithm 7,
hence the amounts of computations carried out by these
algorithms are similar. But the three variants use different
data structure for keeping track of the vertices to be visited
in the next level.

The first one is the algorithm from Leiserson and
Schardl [20]. It uses a smart bag data structure that allows
to split and merge vertex lists fast. There are multiple
theoretical guarantees. The MIT Cilk implementation of the

algorithm is available online6 and we ported the code to
Intel Cilk Plus by simply substituting the header files of
MIT Cilk with the ones of Cilk Plus. The bag data structure
consists of arrays of balanced trees of size 2k. For each
k, the bag contains at most one tree of that size. Such an
organization allows to easily merge two bags together by
using an algorithm similar to carry-add for integer addition.
The code utilizes dynamic memory for its bag data structure
and uses complex pointer techniques to manage its memory.
To avoid a high cost of operation, the node of the balanced
tree can store more than a single element (this parameter
is called grainsize in [20]). This algorithm does not strictly
enforce that each vertex is uniquely added to its bag data
structure. We will refer to this variation of the queue as
relaxed queues. It is shown that the effects are benign
and on the overall, even though the code may carry out
some redundant computations, this scheme yields some
performance improvements. We will refer to this bag-based
Cilk code as CilkPlus-Bag-relaxed.

The second implementation we used is from SNAP v0.47

which uses thread-local storage (TLS) to concurrently keep
partial queues in each thread to avoid synchronization
overheads, and then at the end of each level, local queues
are merged into a global queue. It is implemented using
OpenMP. This algorithm locks a vertex before adding it
to local queue to guarantee that only one instance of that
vertex will be added to any local queues [19]. We carried
one small improvement, by checking if a vertex is traversed
before attempting to lock it. This code base will be called
OpenMP-TLS.

We developed a novel block-accessed shared queue data
structure for a scalable shared memory layered BFS algo-
rithm. The block-accessed queue uses contiguous memory
(simply an array) for storing vertices to be visited in the
next level of BFS. To avoid locking too often, each thread
reserves a block of memory from the queue and uses that
block for adding vertices to the next level. When a thread’s
block is full, it grabs a new block. This operation can simply
be implemented using an index pointer pointing to the next
available block and a new block is obtained by incrementing
the index pointer using an atomic fetch and add of the block
size. At the end of a level, it is possible that some threads
have not entirely filled the last block they were operating on,
hence there will be un-initialized space in the queue. One
approach is to compact the queue by swapping the last filled
elements with these spaces, but this requires a complex book
keeping data structure. Instead, we fill the remaining of the
block with a sentinel value (an invalid vertex ID, such as
-1) to indicate that it is not a vertex that needs to be visited.
Hence in the vertex visit loop, the value needs to be checked

6http://web.mit.edu/∼neboat/www/code.html
7http://snap-graph.sourceforge.net/

if it contains a valid vertex ID. Although this scheme can
produce slightly larger queues, by keeping the block size
small (but not so small so that we do not use atomics too
often), the overhead is minimized. We have implemented
both OpenMP and TBB BFS codes that uses block-accessed
queue, which we will call OpenMP-Block and TBB-Block,
respectively. We have also used trick presented in Leiserson
and Schardl [20] to relax the vertex addition to queue, and
these variants are called OpenMP-Block-relaxed and TBB-
Block-relaxed.

V. EXPERIMENTS

A. Setup

The experiments are run on seven real-world application
graphs that come from various application areas including
linear car analysis, finite element, structural engineering and
automotive industry [16], [21]. They have been obtained
from the University of Florida Sparse Matrix Collection8

and the Parasol project. The list of the graphs and their main
properties are summarized in Table I. The number of colors
obtained with a sequential run of the greedy algorithm is
also listed in the table, as well as the number of levels of a
BFS traversal from vertex number |V |2 .

Name |V | |E| ∆ #Color #Level
auto 448K 3.3M 37 13 58
bmw3 2 227K 5.5M 335 48 86
hood 220K 4.8M 76 40 116
inline 1 503K 18.1M 842 51 183
ldoor 952K 20.7M 76 42 169
msdoor 415K 9.3M 76 42 99
pwtk 217K 5.6M 179 48 267

Table I
PROPERTIES OF THE TEST GRAPHS.

The prototype KNF Intel MIC card we use exposes 31
computational cores when used in offloaded mode (32 are on
the chip but one is reserved by the system), each featuring
4-way SMT. There is 1GB of GDDR5 memory available.
The operating system running on the card is a derivative
of FreeBSD. All the codes that run on KNF are compiled
using a version of icc for Intel MIC. The host uses a dual
Intel Xeon X5680 CPUs clocked at 3.3Ghz with 24GB of
main memory and runs CentOS 5.5. Codes compiled on the
host are typically compiled with icc. We also performed test
compiling with gcc 4.5.6 for all the codes that uses OpenMP
and TBB and report the best result9. The only case where gcc
4.5.6 was leading to better performance is when compiling
SNAP which are reported as OpenMP-TLS in Figure 4(d).

We would like to note that no absolute numbers will be
quoted for two reasons. First, the focus here is on scalability
and absolute numbers are likely to be meaningless since

8http://www.cise.ufl.edu/research/sparse/matrices/
9Cilk Plus has recently been added to more recent versions of GCC

http://web.mit.edu/~neboat/www/code.html
http://snap-graph.sourceforge.net/
http://www.cise.ufl.edu/research/sparse/matrices/

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

OpenMP-dynamic
OpenMP-static

OpenMP-guided

(a) Using OpenMP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

CilkPlus
CilkPlus-holder

(b) Using Cilk Plus

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

TBB-simple
TBB-auto

TBB-affinity

(c) Using TBB

Figure 1. Speedup of the coloring implementations on all (naturally ordered) graphs.

KNF is a prototype design. Second, at the time of writing
this manuscript, the numbers are confidential and the authors
are under non-disclosure agreement.

In all experiments, 10 runs are performed we report the
average of the performance or the last 5 runs. This allows
to be sure that the runtime systems are properly initialized.
The graph is transfered to the memory of the co-processor
beforehand. Speedup value on multiple graphs are geometric
mean of the speedup of each graph, which is computed using
as baseline the configuration that performs the fastest on 1
thread for that graph.

B. Graph Coloring

We start the evaluation of the coloring algorithms by
testing independently the different variants and parameters
of each implementation (see Figure 1). The evaluation is
performed using a number of threads from 1 to 121 by
increment of 10. Different chunk sizes (from 40 to 150)
were tried and only the best results are reported.

We observed that, for the OpenMP experiments, the
dynamic scheduling policy performs better with a chunk
size of 100. The static policy is better with a chunk size of
40 and the guided scheduling policy performs better with
a chunk size of 100. Figure 1(a) presents the results of
the best configuration for each scheduling policy. The three
scheduling policies lead to similar results on 31 threads
and less. After 51 threads, the dynamic scheduling clearly
appears to be better than the guided and static scheduling
policies. The guided scheduling policies appears to be in
general, but not always, better than the static scheduling
policy. Therefore, the dynamic variant will be the one
reported for coloring with OpenMP.

We have two variants of the Cilk Plus implementation
of the coloring algorithm (see Section IV-A2): one uses
a holder and the other one uses thread id to access the
local storage. The dynamic nature of the Cilk Plus scheduler
makes it difficult to clearly state which parameter set is bet-
ter. Figure 1(b) presents the performance achieved by both
variants run with a granularity of 100 which was the chunk
size that leads to the highest speedup. The performance of
both variants are very close. Since the use of worker IDs

is discouraged, the variant with the holder will be the one
reported for the Cilk Plus implementation of coloring.

There are three implementations of the coloring algorithm
using the TBB programming model. They differ in the
partitioner used. All three variants reached best performance
when run with a minimum chunk size of 40. Figure 1(c)
presents the results obtained using the three partitioners.
The simple partitioner clearly leads to better speedup in this
experiments on 31 threads and more. The affinity partitioner
seems to perform consistently slower than the auto parti-
tioner. From now on, the result with the simple partitioner
will be the one reported for the TBB implementation of the
coloring algorithm.

As seen in Figure 1 our OpenMP implementation clearly
scales better than our TBB and Cilk Plus implementations.
The speedup achieved by the OpenMP implementation
monotonically increases with the number of threads. It
achieves a speedup of 60 using 81 threads and reach a
speedup of 72 on 121 threads. The speedup achieved by the
TBB implementation peaks at a speedup of 45.15 achieved
on 101 threads. Our Cilk implementation peaks at a speedup
of 32 obtained when using 81 threads.

Parallelization of the coloring algorithm would not be use-
ful if the quality of the solution was significantly degraded.
We verified that the number of colors never differ by more
than 5% when the algorithm is executed in parallel.

We have observed that our codes achieved speedup
up to 121 threads despite there is only 31 cores on our
prototype Intel MIC coprocessor. The SMT are providing
a significant improvement, indicating that the memory
subsystem is stressed. To significantly increase the amount
of memory transfers (and the runtime), we shuffled the
vertex IDs of graphs randomly which break all the locality
that naturally appears in the graphs. The same variants of
the coloring algorithm proved to be best and we only report
the best speedup achieved by each variant in Figure 2.
The OpenMP implementation reaches a speedup of 153
despite there are only 121 threads used. The TBB and
Cilk Plus implementations reach a speedup of 121 and 98,
respectively.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

OpenMP
TBB

CilkPlus

Figure 2. Speedup of coloring on the randomly ordered graphs.

The graph coloring kernel stresses the memory subsystem.
A proper use of the SMT capabilities of the Intel MIC
architecture is the key to hide latencies and achieve best
performance. Therefore, it comes without a surprise that the
less expensive dynamic scheduling policies performs better
than the more complex ones. On randomly ordered graphs,
the obtained speedup are linear in the number of threads
showing that the memory subsystem of Intel MIC scales
well.

C. Irregular Computation

This experiment is designed to vary the computation
requirement of the application so as to test the performance
of Intel MIC on irregular applications that are less memory
intensive than graph coloring. The results of our experiments
are presented in Figure 3. Since the number of iterations
varies, hence the amount of computation, the speedup are
computed relatively to the same number of iterations. In
this experiment OpenMP performed best using the dynamic
scheduling policy and TBB performed best using the simple
partitioner.

When increasing the amount of computation the speedup
of the OpenMP and TBB implementations decrease (See
Figure 3(a) and 3(c)). Indeed, when we increase the amount
of computation we also increase the contention on the FPU,
so the SMT becomes less important and speedup decrease.
Interestingly, the speedup of Cilk Plus (see Figure 3(b))
increases with the computation since an increase in the
amount of computation reduces the scheduling overhead.

Eventually, with 10 iterations the three programing
models (and runtime system) reaches essentially the same
performance. The highest speedup is 49 and is obtained
using 121 threads. The speedup only marginally increased
compared to the 61 threads case where the speedup was 46.

When the amount of computation increases the speedup
achieved decreases since the pressure on computational
components within the cores are more stressed and SMT
becomes less useful. Yet, SMT can not be ignored since the
speedup is almost double on 121 than it is on 31 threads.

D. Breadth-First Search

The speedup achievable using a layered BFS algorithm
depends on the structure of the graph. Figure 4(a) and 4(b)
shows the performance of the OpenMP-Block and OpenMP-
Block-relaxed implementation on two sample graphs from
our set, the pwtk and inline 1 graph, respectively. It also
shows the maximum achievable speedup according to our
performance model presented in Section III-C. For the
model, we used as block size the one that yields the best
performance in our implementation (32 in this case). Notice
that the peak speedup on the inline 1 graph is about twice
the speedup achieved on pwtk. Also the slope of the speedup
dramatically change at 13 processors on the pwtk graph.
This change of slope is explained by our performance
model. Moreover it seems to indicate that the margin for
improvement on less than 31 threads is quite small on both
pwtk and inline 1. After 31 threads, more than 2 threads
got scheduled on one core and the ”threads are completely
independent” assumption is no longer valid, making the
model no longer accurate. As a reference, all the other
graphs behave more or less like inline 1: pwtk is an outlier
in our experiment.

On the all graphs, the relaxed queue variants led to
consistently better speedup than the lock-based variants. So
we present only relaxed variants of the two implementation
using blocked queues and the algorithm using a bag on all
the graphs in Figure 4(c). It appears that the implementation
using the bag data structure performs poorly on Intel MIC
whereas the implementation based on the blocked queue
performs better. The OpenMP-Block-relaxed implementa-
tion (using the dynamic scheduling policy) seems to perform
slightly better than the model predicted up to 37 threads
and then its performance decreases. This tells us, the Intel
MIC architecture allowed us to exploit all the parallelism
contained in the algorithm. The performance of the TBB-
Block-relaxed implementation (using the simple partitioner)
is closer to the predicted performance. Notice that none of
the implementation we present seem to be able to properly
use the SMT capabilities exposed by the architecture.

To understand why the CilkPlus-Bag-relaxed implemen-
tation does not scale well on Intel MIC, we executed the dif-
ferent implementations on the host instead on running on the
coprocessor. Recall the host has 12 cores and hyperthread-
ing. Figure 4(d) presents the speedup obtained on CPUs and
the modeled performance. We also included for comparison
the performance obtained by the OpenMP-TLS algorithm
(from SNAP) that does not use relaxed queues. On regular,
CPUs the Bag and TLS based implementation perform
significantly slower than our Block queue implementation
(except using 23 and 24 threads where a performance issue
in the OpenMP runtime system appears). The bag based
implementation was not scaling on CPUs, therefore it comes
with no surprise that it performs poorly on Intel MIC.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

1 iteration
3 iterations
5 iterations

10 iterations

(a) Using OpenMP

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

1 iteration
3 iterations
5 iterations

10 iterations

(b) Using Cilk

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

1 iteration
3 iterations
5 iterations

10 iterations

(c) Using TBB

Figure 3. Speedup of Irregular Computations on all graphs.

Fairly synchronous algorithm can be executed on Intel
MIC even using fine grain parallelism. However complex
synchronization schemes induces a large overhead at the
granularity making the tradeoff between simplicity and effi-
ciency more difficult to find.

VI. CONCLUSION

We evaluated the scalability of two graph algorithms on
the upcoming Intel MIC architecture using a KNF prototype.
Our findings showed that the hardware provided as much
parallelism as we could expect. On BFS, the obtained
speedup matched a prediction model of the achievable
speedup (up to the number of cores). Coloring algorithms
showed speedup up to 121 threads. Computationally expen-
sive kernels with irregular dependencies showed speedup of
49.

The Intel MIC coprocessor is programmed using standard
shared memory programming paradigm and our programs
can easily be executed on both Intel MIC and regular CPUs.
We used in our experiment OpenMP, Cilk Plus and TBB.
OpenMP is a very well known programming model. Cilk
Plus programs are almost written like a sequential pro-
grams. And TBB uses a clear object oriented programming
paradigm. We managed to achieve higher performance using
OpenMP. But it should be noted that the algorithm we
implemented exposes very simple parallelism while Cilk
Plus and TBB should be able to manage more complex
form of parallelism. However when the computation vol-
umes slightly increased, the three programming model yield
similar performance.

Our experiments showed that by simply running shared
memory codes on a larger system, one should not expect
to directly achieve much higher performance. Many design
issues are easily overlooked in small shared memory system
such as properly exposing the right level of parallelism and
limiting the number of atomic operations. Such issues are
not necessarily be noticeable on small systems but could
dampen the performance at a large scale.

The main highlight of our experiments is the SMT ca-
pabilities of the Intel MIC architecture. It allows to achieve
linear speedup in memory intensive kernels and is necessary

to achieve peak speedup on irregular computationally ex-
pensive kernel. Yet SMT is a double-edged sword since any
unnecessary operation increases both the sequential runtime
and dampens the scalability of the application by increasing
in-core pressure.

Overall, we found the Intel MIC architecture to be easy
to program and scaled gracefully on challenging graph algo-
rithms. However, we performed all our test on a prototype
card and we are looking forward to perform more evaluation
on the final design.

ACKNOWLEDGMENT

This work was partially supported by the U.S. Department of
Energy SciDAC Grant DE-FC02-06ER2775 and NSF grants CNS-
0643969, OCI-0904809 and OCI-0904802.

We would like to thank the Ohio Supercomputing Center for
providing us the computational infrastructure; in particular John
Eisenlohr and Doug Johnson for their technical support. We also
would like to thank Intel for letting us use an Intel MIC prototype
and many of its employees for their valuable comments, in partic-
ular Paul Besl, Bob Davies, Timothy Prince, James Reinders and
Michael Voss for fruitful discussions.

REFERENCES

[1] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry,
“Challenges in parallel graph processing,” Parallel Processing
Letters, vol. 17, no. 1, pp. 5–20, 2007.

[2] D. Bozdağ, A. Gebremedhin, F. Manne, E. Boman, and Ü. V.
Çatalyürek, “A framework for scalable greedy coloring on
distributed memory parallel computers,” J. of Parallel and
Distributed Computing, vol. 68, no. 4, pp. 515–535, 2008.

[3] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color
is your jacobian? Graph coloring for computing derivatives,”
SIAM Review, vol. 47, no. 4, pp. 629–705, 2005.

[4] J. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer,
and C. Martin, “A comparison of parallel graph coloring al-
gorithms,” Northeast Parallel Architectures Center at Syracuse
University (NPAC), Tech. Rep. SCCS-666, 1994.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press, 2001.

[6] U. Brandes, “A faster algorithm for betweenness centrality,”
J. of Mathematical Sociology, vol. 25, pp. 163–177, 2001.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

Model
OpenMP-Block-relaxed

OpenMP-Block

(a) pwtk on Intel MIC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

Model
OpenMP-Block-relaxed

OpenMP-Block

(b) inline 1 on Intel MIC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

sp
e
e
d

u
p

number of threads

Model
OpenMP-Block-relaxed

TBB-Block-relaxed
CilkPlus-Bag-relaxed

(c) All graphs on Intel MIC

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25

sp
e
e
d

u
p

number of threads

Model
OpenMP-Block-relaxed

TBB-Block-relaxed
OpenMP-TLS

CilkPlus-Bag-relaxed

(d) All graphs on CPU

Figure 4. Speedup of Parallel Layered Breadth-First Search.

[7] M. M. Mathis and D. J. Kerbyson, “A general performance
model of structured and unstructured mesh particle transport
computations,” J. of Supercomputing, vol. 34, no. 2, pp. 181–
199, 2005.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” in Symposium on Principles and Practice of
Parallel Programming (PPoPP), 1995, pp. 207–216.

[9] M. A. Bender and M. O. Rabin, “Online scheduling of parallel
programs on heterogeneous systems with applications to cilk,”
Theory Comput. Systems, vol. 35, pp. 289–304, 2002.

[10] M. Tchiboukdjian, N. Gast, D. Trystram, J.-L. Roch, and
J. Bernard, “A tighter analysis of work stealing,” in Inter-
national Symposium on Algorithms and Computation, 2010.

[11] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin,
“Reducers and other cilk++ hyperobjects,” in Symposium on
Parallel Architectures and Algorithms (SPAA), Aug. 2009.

[12] D. W. Matula, “A min-max theorem for graphs with applica-
tion to graph coloring,” SIAM Review, vol. 10, pp. 481–482,
1968.

[13] D. Zuckerman, “Linear degree extractors and the inapprox-
imability of max clique and chromatic number,” Theory of
Computing, vol. 3, pp. 103–128, 2007.

[14] T. F. Coleman and J. J. More, “Estimation of sparse Jacobian
matrices and graph coloring problems,” SIAM J. on Numerical
Analysis, vol. 1, no. 20, pp. 187–209, 1983.

[15] J. C. Culberson, “Iterated greedy graph coloring and the
difficulty landscape,” University of Alberta, Tech. Rep. TR
92-07, Jun. 1992.

[16] A. H. Gebremedhin and F. Manne, “Scalable parallel graph
coloring algorithms,” Concurrency: Practice and Experience,
vol. 12, pp. 1131–1146, 2000.

[17] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halap-
panavar, and A. Pothen, “Graph coloring algorithms for multi-
core and massively multithreaded architectures,” Parallel
Computing, 2012, (to appear).

[18] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hen-
drickson, and U. Catalyurek, “A scalable distributed parallel
breadth-first search algorithm on BlueGene/L,” in Proc. of
Super Computing, 2005.

[19] D. A. Bader and K. Madduri, “Snap, small-world network
analysis and partitioning: An open-source parallel graph
framework for the exploration of large-scale networks,” in
International Symposium on Parallel and Distributed Pro-
cessing (IPDPS), 2008, pp. 1–12.

[20] C. L. Leiserson and T. B. Schardl, “A work-efficient par-
allel breadth-first search algorithm (or how to cope with
the nondeterminism of reducers),” in Symposium on Parallel
Architectures and Algorithms (SPAA), 2010, pp. 303–314.

[21] M. M. Strout and P. D. Hovland, “Metrics and models for
reordering transformations,” in Workshop on Memory System
Performance (MSP), June 8 2004, pp. 23–34.

	Introduction
	Programming Frameworks
	OpenMP
	Cilk Plus
	Threading Building Blocks

	Algorithms
	Graph Coloring
	Irregular Computation Microbenchmark
	Parallel Breadth-First Search

	Implementation
	Graph Coloring
	OpenMP
	Cilk Plus
	TBB

	Irregular Computation
	Breadth-First Search

	Experiments
	Setup
	Graph Coloring
	Irregular Computation
	Breadth-First Search

	Conclusion
	References

