Birkhoff's axioms

Primitives: point, line, distance, angle.

- I The points A, B,... of any line are in 1 : 1 correspondence with the real numbers such that $|x_b x_a| = d(A, B)$ for all points A and B.
- II One and only one line ℓ contains any two distinct points P and Q.
- III The half lines (or rays) ℓ, m, n, \ldots through any point O can be put into 1:1 correspondence with the real numbers $a \pmod{2\pi}$ so that if A and B are points (other than O) of ℓ and m, respectively, the difference $a_{\ell} - a_m \pmod{2\pi}$, of numbers associated with the line ℓ and m is $m \angle AOB$ (i.e., the measure of $\angle AOB$).
- IV If in two triangles $\triangle ABC$ and $\triangle A'B'C'$ and for some constant k > 0, d(A, B) = kd(A', B'), d(A, C) = kd(A', C') and $m \angle B'A'C' = m \angle BAC$ then also d(B, C) = kd(B', C'), $m \angle C'B'A' = m \angle CBA$ and $m \angle A'C'B' = m \angle ACB$.