
Sines and cosines in the Poincaré disk model of the hyperbolic plane

Theorem 1 Assume that ABC4 is a right triangle, with its right angle at C, in the hyperbolic plane
represented by the Poincaré disk model. Then

sin(B) =
sinh(b)

sinh(c)
and cos(A) =

tanh(b)

tanh(c)
.

Proof: Without loss of generality we may assume that A is at the center of the Poincaré disk.
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The lines AB and AC are represented by straight lines, the line BC is represented by an arc of a circle
C1 centered at O1. Let B′ resp. C ′ be the second intersection of OB resp OC with this circle and B1

be the orthogonal projection of O to the line OB.

Since the Poincaré disk and the circle C1 are orthogonal to each other, the power of A = O with
respect to C1 is 1 (=the radius of the Poincaré disk). Hence the Euclidean distance OB satisfies
OB ·OB′ = 1. We also know that the Euclidean distance OB equals tanh(c/2). Thus

BB′ = OB′ −OB = 1/OB −OB = 1/ tanh(c/2) − tanh(c/2) =
cosh(c/2)

sinh(c/2)
− sinh(c/2)

cosh(c/2)

=
cosh2(c/2) − sinh2(c/2)

sinh(c/2) · cosh(c/2)
=

2

2 · sinh(c/2) · cosh(c/2)
=

2

sinh(c)

Similarly, since the Euclidean distance OC equals tanh(b/2), we get CC ′ = 2/ sinh(b). The angle of
ABC4 at B is the angle between the tangent of C1 at B and the line OB. Due to the Star Trek
Lemma, this is the half of the central angle ∠BO1B

′, which is equal to ∠BO1B1. Hence sin(B) may
be calculated from the right triangle O1B1B4, and we get

sin(B) =
BB1

O1B
=

BB′

2O1C
=

BB′

CC ′ =
sinh(b)

sinh(c)
.

We may calculate cos(A) using cos(A) = AB1/AO1. Here

AB1 = OB + BB′/2 = tanh(c/2) + 1/ sinh(c) =
sinh(c/2)

cosh(c/2)
+

1

2 sinh(c/2) cosh(c/2)

=
2 sinh2(c/2) + 1

2 sinh(c/2) cosh(c/2)
=

2 sinh2(c/2) + cosh2(c/2) − sinh2(c/2)

sinh(c)
=

cosh2(c/2) + sinh2(c/2)

sinh(c)

=
cosh(c)

sinh(c)
=

1

tanh(c)
.

1



Similarly, AO1 = AC + CC ′/2 yields AO1 = 1/ tanh(b) and so we obtain

cos(A) = AB1/AO1 =
tanh(b)

tanh(c)
.
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In analogy to the formulas for sin(B) and cos(A) we also have

sin(A) =
sinh(a)

sinh(c)
and cos(B) =

tanh(a)

tanh(c)
.

Since 1 = sin2(A) + cos2(A), we get

1 =
sinh2(a)

sinh2(c)
+

tanh2(b)

tanh2(c)
=

sinh2(a) + tanh2(b) · cosh2(c)

sinh2(c)
=

sinh2(a) cosh2(b) + sinh2(b) · cosh2(c)

cosh2(b) sinh2(c)
.

Multiplying both sides with cosh2(b) sinh2(c) we get

cosh2(b) sinh2(c) = sinh2(a) cosh2(b) + sinh2(b) · cosh2(c).

Using the identity sinh2(x) = cosh2(x) − 1 we may get rid of the hyperbolic sines and write

cosh2(b)(cosh2(c) − 1) = (cosh2(a) − 1) cosh2(b) + (cosh2(b) − 1) · cosh2(c), i.e.,

cosh2(b) cosh2(c) − cosh2(b) = cosh2(a) cosh2(b) − cosh2(b) + cosh2(b) cosh2(c) − cosh2(c).

Adding cosh2(b) + cosh2(c) − cosh2(b) cosh2(c) yields

cosh2(c) = cosh2(a) cosh2(b).

Since the range of the hyperbolic cosine function is a subset of the positive real numbers, we may take
the square root on both sides and get the hyperbolic Pythagorean theorem:

Theorem 2 If a, b, c are the sides of a hyperbolic right triangle, c is the hypotenuse and the hyperbolic
plane is the Poincaré disk model then

cosh(c) = cosh(a) cosh(b).
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