Sample Test 1

The actual test will have only 5 questions.

1. Consider the following relation on the set $\{-2,-1,0,1,2\}: x \sim y$ means that $|x-y|=1$. Is the relation reflexive? Antireflexive? Symmetric? Draw the graph of the relation.
2. Describe the effect of joining a vertex $x y$ to a graph G in terms of its adjacency matrix.
3. Draw the direct product $C_{4} \times P_{3}$. Here C_{4} is a cycle of length $4, P_{3}$ is a path of length 3 .
4. Draw the graph whose incidence matrix is

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(Here the columns are associated to edges.)
5. Show that every 5 -regular graph has an even number of vertices.
6. Assume that x and y are different vertices, and that there is a walk from x to y in the graph. Prove that there is also a path between the same two vertices.
7. Prove that a bipartite graph may not contain an odd cycle. Is the converse also true?
8. Using Dijkstra's algorithm, find a minimum weight path from s to t for the graph shown in Fig. 1. Show all your work.

Figure 1: A weighted graph
9. For which values of n does the complete graph K_{n} have an Euler walk?
10. For which values of m and n does the complete bipartite graph $K_{m, n}$ have a Hamilton path?
11. Prove that an edge $x y$ is a bridge if and only of it is not contained in any cycle.
12. A graph contains 9 connected components. If there is a bridge in the graph, how many connected components will there be after removing one edge?
13. State the equivalent definitions of a block.
14. State the inequalities between connectivity, edge-connectivity, and minimum degree in a graph. Outline the proof of the inequality.
15. Prove that a graph is a tree if and only if it is minimally connected.
16. Find the number of spanning trees of $P_{2} \times P_{1}$.
17. Using Kruskal's algorithm, find a minimum weight spanning tree of the graph shown in Fig. 1.
18. Outline the proof of the fact that Prim's algorithm yields a minimum weight spanning tree

Good Luck.
Gábor Hetyei

