Definition A square matrix is doubly stochastic if all its entries are non-negative and the sum of the entries in any of its rows or columns is 1 .

Example The matrix

$$
\left(\begin{array}{lll}
7 / 12 & 0 & 5 / 12 \\
1 / 6 & 1 / 2 & 1 / 3 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right)
$$

is doubly stochastic.
A special example of a doubly stochastic matrix is a permutation matrix.
Definition A permutation matrix is a square matrix whose entries are all either 0 or 1 , and which contains exactly one 1 entry in each row and each column.

Example The matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

is a permutation matrix.
Recall that a convex combination of the vectors v_{1}, \ldots, v_{n} is a linear combination $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ such that each α_{i} is non-negative and $\alpha_{1}+\cdots+\alpha_{n}=1$. (Necessarily, each α_{i} is at most 1.)

Theorem(Birkhoff) Every doubly stochastic matrix is a convex combination of permutation matrices.
The proof of Birkhoff's theorem uses Hall's marriage theorem. We associate to our doubly stochastic matrix a bipartite graph as follows. We represent each row and each column with a vertex and we connect the vertex representing row i with the vertex representing row j if the entry $x_{i j}$ in the matrix is not zero. The graph associated to our example is given in the picture below.

The proof of Birkhoff's theorem depends on the following key Lemma.
Lemma The associated graph of any doubly stochastic matrix has a perfect matching.
Proof: Assume, by way of contradiction that the graph has no perfect matching. Then, by Hall's theorem, there is a subset A of the vertices in one part such that the set $R(A)$ of all vertices connected to some vertex in A has strictly less than $|A|$ elements. Without loss of generality we may assume that A is a set of vertices representing rows, the set $R(A)$ consists then of vertices representing columns. Consider now the sum $\sum_{i \in A, j \in R(A)} x_{i j}$, i.e., the sum of all entries located in a row belonging to A and in a column in $R(A)$. In the rows belonging to A all nonzero entries are located in columns belonging to $R(A)$ (by the definition of the associated graph). Thus

$$
\sum_{i \in A, j \in R(A)} x_{i j}=|A|
$$

since the graph is doubly stochastic and the sum of elements located in any of given $|A|$ rows is $|A|$. On the other hand, the sum of all elements located in all columns belonging to $R(A)$ is at least $\sum_{i \in A, j \in R(A)} x_{i j}$ since the entries not belonging to a row in A are non-negative. Since the matrix is doubly stochastic, the the sum of all elements located in all columns belonging to $R(A)$ is also exactly $|R(A)|$. Thus we obtain

$$
\sum_{i \in A, j \in R(A)} x_{i j} \leq|R(A)|<|A|=\sum_{i \in A, j \in R(A)} x_{i j}
$$

a contradiction.

Proof of Birkhoff's theorem: We proceed by induction on the number of nonzero entries in the matrix. Let M_{0} be a doubly stochastic matrix. By the key lemma, the associated graph has a perfect matching. Underline the entries associated to the edges in the matching. For example in the associated graph above $(1,3),(2,1),(3,2)$ is a perfect matching so we underline x_{13}, x_{21} and x_{32}. Thus we underline exactly one element in each row and each column. Let α_{0} be the minimum of the underlined entries. Let P_{0} be the permutation matrix that has a 1 exactly at the position of the underlined elements. If $\alpha_{0}=1$ then all underlined entries are 1 , and $M_{0}=P_{0}$ is a permutation matrix. If $\alpha_{0}<1$ then the matrix $M_{0}-\alpha_{0} P_{0}$ has non-negative entries, and the sum of the entries in any row or any column is $1-\alpha_{0}$. Dividing each entry by $\left(1-\alpha_{0}\right)$ in $M_{0}-\alpha_{0} P_{0}$ gives a doubly stochastic matrix M_{1}. Thus we may write $M_{0}=\alpha_{0} P_{0}+\left(1-\alpha_{0}\right) M_{1}$ where M_{1} is not only doubly stochastic, but has less non-zero entries than M_{0}. By our induction hypothesis M_{1} may be written as $M_{1}=\alpha_{1} P_{1}+\cdots+\alpha_{n} P_{n}$ where P_{1}, \cdots, P_{n} are permutation matrices, and $\alpha_{1} P_{1}+\cdots+\alpha_{n} P_{n}$ is a convex combination. But then we have

$$
M_{0}=\alpha_{0} P_{0}+\left(1-\alpha_{0}\right) \alpha_{1} P_{1}+\cdots\left(1-\alpha_{0}\right) \alpha_{n} P_{n}
$$

where $P_{0}, P_{1}, \cdots, P_{n}$ are permutation matrices, and we have a convex combination since, $\alpha_{0} \geq 0$, each $\left(1-\alpha_{0}\right) \alpha_{i}$ is non-negative and we have

$$
\alpha_{0}+\left(1-\alpha_{0}\right) \alpha_{1}+\cdots\left(1-\alpha_{0}\right) \alpha_{n}=\alpha_{0}+\left(1-\alpha_{0}\right)\left(\alpha_{1}+\cdots \alpha_{n}\right)=\alpha_{0}+\left(1-\alpha_{0}\right)=1
$$

In our example

$$
P_{0}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and $\alpha_{0}=1 / 6$. Thus we get

$$
M_{1}=\frac{1}{1-1 / 6}\left(M_{0}-\frac{1}{6} P_{0}\right)=\frac{6}{5}\left(\begin{array}{lll}
7 / 12 & 0 & 1 / 4 \\
0 & 1 / 2 & 1 / 3 \\
1 / 4 & 1 / 3 & 1 / 4
\end{array}\right)=\left(\begin{array}{lll}
7 / 10 & 0 & 3 / 10 \\
0 & 3 / 5 & 2 / 5 \\
3 / 10 & 2 / 5 & 3 / 10
\end{array}\right)
$$

The graph associated to M_{1} is the following.

A perfect matching is $\{(1,1),(2,2),(3,3)\}$, the associated permutation matrix is

$$
P_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and we have $\alpha_{1}=3 / 10$. Thus we get

$$
M_{2}=\frac{1}{1-3 / 10}\left(M_{1}-\frac{3}{10} P_{1}\right)=\frac{10}{7}\left(\begin{array}{lll}
4 / 10 & 0 & 3 / 10 \\
0 & 3 / 10 & 2 / 5 \\
3 / 10 & 2 / 5 & 0
\end{array}\right)=\left(\begin{array}{lll}
4 / 7 & 0 & 3 / 7 \\
0 & 3 / 7 & 4 / 7 \\
3 / 7 & 4 / 7 & 0
\end{array}\right)
$$

The graph associated to M_{2} is the following.

A perfect matching in this graph is $\{(1,3),(2,2),(3,1)\}$, the associated permutation matrix is

$$
P_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and we have $\alpha_{2}=3 / 7$. Thus we get

$$
M_{3}=\frac{1}{1-3 / 7}\left(M_{2}-\frac{3}{7} P_{2}\right)=\frac{7}{4}\left(\begin{array}{lll}
4 / 7 & 0 & 0 \\
0 & 0 & 4 / 7 \\
0 & 4 / 7 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

We are done since $M_{3}=P_{3}$ is a permutation matrix. Working our way backwards we get

$$
\begin{gathered}
M_{2}=\alpha_{2} P_{2}+\left(1-\alpha_{2}\right) M_{3}=\frac{3}{7} P_{2}+\frac{4}{7} P_{3} \\
M_{1}=\alpha_{1} P_{1}+\left(1-\alpha_{1}\right) M_{2}=\frac{3}{10} P_{1}+\frac{7}{10}\left(\frac{3}{7} P_{2}+\frac{4}{7} P_{3}\right)=\frac{3}{10} P_{1}+\frac{3}{10} P_{2}+\frac{4}{10} P_{3}
\end{gathered}
$$

and

$$
M_{0}=\alpha_{0} P_{0}+\left(1-\alpha_{0}\right) M_{1}=\frac{1}{6} P_{0}+\frac{5}{6}\left(\frac{3}{10} P_{1}+\frac{3}{10} P_{2}+\frac{4}{10} P_{3}\right)=\frac{1}{6} P_{0}+\frac{1}{4} P_{1}+\frac{1}{4} P_{2}+\frac{1}{3} P_{3} .
$$

We obtained that

$$
\left(\begin{array}{lll}
7 / 12 & 0 & 5 / 12 \\
1 / 6 & 1 / 2 & 1 / 3 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right)=\frac{1}{6}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\frac{1}{4}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

