"Complete failure" of the Ford-Fulkerson algorithm

Let a be the only positive root of the equation $x^{3}+x-1=0$. (There is only one positive root, according to Descartes' rule of signs.) Since $\left(\frac{1}{2}\right)^{3}+\frac{1}{2}-1<0$ and $1^{3}+1-1>0$, by the intermediate value theorem, a must be strictly between $\frac{1}{2}$ and 1 .

Consider the graph with the capacities and initial flow below:

Capacities

First flow

Using the correcting path $s \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow t$ we can increase this flow by at most a, and get the following second flow:

We used $1-a=a^{3}$ to simplify the value on the edge $v_{2} \rightarrow v_{1}$. Using the correcting path $s \rightarrow v_{1} \rightarrow$ $v_{4} \rightarrow v_{3} \rightarrow v_{2} \rightarrow t$ we can increase this flow by at most a^{2} and get the following third flow:

Here we used $a-a^{2}=a(1-a)=a \cdot a^{3}=a^{4}$ to simplify the value on the edge $v_{2} \rightarrow v_{3}$. Let us use now the correcting path $s \rightarrow v_{3} \rightarrow v_{4} \rightarrow v_{1} \rightarrow v_{2} \rightarrow t$, which allows to increase the flow by at most a^{3}, and get the following fourth flow:

Here we used $a^{2}-a^{3}=a^{2}(1-a)=a^{2} \cdot a^{3}=a^{5}$ to simplify the value on the edge $v_{4} \rightarrow v_{3}$. Let us use finally the correcting path $s \rightarrow v_{3} \rightarrow v_{2} \rightarrow v_{1} \rightarrow v_{4} \rightarrow t$, which allows to increase the flow by at most a^{4}, and get the fifth flow:

The value on the edge $v_{4} \rightarrow v_{1}$ was simplified using $a^{3}-a^{4}=a^{3}(1-a)=a^{3} \cdot a^{3}=a^{6}$.
Compare now the first and the fifth flow. Note that for those edges of the graph that go between two vertices from $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ the values in the fifth flow may be obtained by multiplying the corresponding value in the first flow by a^{4}. Observe furthermore, that for each correcting path above the increase was limited by a power of a written on an edge with both ends in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. If we repeat the same sequence of correcting paths one more times, we can increase the flow by a^{4} ($a+$ $a^{2}+a^{3}+a^{4}$) and end up with a flow that is "similar" to the first flow again, except for the edges connecting two vertices from $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ the numbers from the first flow have to be multiplied by a^{4}. Repeating the same sequence of correcting paths infinitely, the flow value converges to

$$
\left(1+a+a^{2}\right)+\left(a+a^{2}+a^{3}+a^{4}\right)+\left(a^{5}+a^{6}+a^{7}+a^{8}\right)+\cdots=a+a^{2}+\frac{1}{1-a}
$$

Since $1-a=a^{3}$, the flow value converges to $a+a^{2}+a^{-3}<1+1+2^{3}=10$ (by $\frac{1}{2}<a<1$). This is definitely less then the value of the maximum flow which is obviously $4 \cdot 20=80$.

