How to estimate my grade in MATH 1100?

This handout is supposed to help you estimate your grade in MATH 1100, by providing a sample calculation. The rules how to compute the course grade are detailed in the syllabus. Keep in mind, you need to have at least 90% overall to get an "A", at least 75% to get a "B", at least 60% overall to get a "C", and at least 50% overall to get a "D". Just replace the numbers below with your numbers provided on Moodle, and do the math!

Suppose Claire had 5 unexcused absences, her average score on quizzes and webwork was 78% (this is the "HW" score on Moodle) and her test scores were 12, 12 and 18 (out of 20). Each unexcused absence has cost 0.8% of Claire's course grade, thus, instead of earning 10%, she earned $10-5 \cdot 0.8=6$ percent for attendance. On a scale of up to 20 points, Claire's webwork+quiz performance is counted as $20 \times 0.78=15.6$ points. The lowest number in the sequence $15.6,12,12,18$ is 12 , so we drop it (but only once). The average of the remaining numbers is

$$
\frac{15.6+12+18}{3}=15.2
$$

Since $15.2 / 20=0.76$, we can say that Claire's in-class performance was 76 percent. According to the syllabus, we take either each test with 20% weight and the final with 30% weight, or we take each test with 13% weight and the final with 51% weight. If Claire scores x percent on the final then her overall score will be the larger of

$$
6 \%+0.6 \cdot 76 \%+0.3 \cdot x \% \quad \text { and } \quad 6 \%+0.39 \cdot 76 \%+0.51 \cdot x \%
$$

If we solve the inequality $6 \%+0.6 \cdot 76 \%+0.3 \cdot x \% \leq 6 \%+0.39 \cdot 76 \%+0.51 \cdot x \%$, we get $x \geq 76 \%$, where 76% was Claire's in class performance. This is not surprising: giving more weight to the final helps only if you do better on it than your in-class performance.

Best case scenario: Claire scores 100% on the final. In this case, her overall score will be

$$
6 \%+0.39 \cdot 76 \%+0.51 \cdot 100 \%=86.64 \% .
$$

This is better than 75% and worse than 90% so Claire gets a "B".
Worst case scenario: Claire scores 0% on the final. In this case, her overall score will be

$$
6 \%+0.6 \cdot 76 \%+0.3 \cdot 0 \%=51.6 \% .
$$

This is still more than 50% but less than 60% so she gets a "D".
Average scenario: Claire scores 76% on the final, exactly the same as her in class performance. Either rule gives the same overall score:

$$
6 \%+0.6 \cdot 76 \%+0.3 \cdot 76 \%=6 \%+0.39 \cdot 76 \%+0.51 \cdot 76 \%=6 \%+0.9 \cdot 76 \%=74.4 \% .
$$

This is just a little shy of 75%, Claire is likely to get a "C", unless her instructor decides to round up all scores between 74% and 75% to 75%. (Not likely.)

At least how much should Claire get on the final to get a "B"?

Claire needs to do better than her average in-class performance, so we will use the second formula. The solution of

$$
6 \%+0.39 \cdot 76 \%+0.51 \cdot x \% \geq 75 \%
$$

is $x \geq 77.17 \%$.

At least how much should Claire get on the final to get a "C"?

Claire does not need to do better than her average in-class performance, so we can use the first formula. The solution of

$$
6 \%+0.6 \cdot 76 \%+0.3 \cdot x \% \geq 60 \%
$$

is $x \geq 28 \%$. Scoring 28% would be an " F " on the common final but still enough for the "C" in the course.

