Change of basis formulas

Given a basis $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ of \mathbb{R}^{n}, we associate to it the matrix $P_{\mathcal{B}}=\left[\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right]$. Example. When $n=1$ set $\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{b}_{\mathbf{2}}=\left[\begin{array}{c}0 \\ 1 / 2\end{array}\right]$. We then have

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 / 2
\end{array}\right]\right\} \quad \text { and } \quad P_{\mathcal{B}}=\left[\begin{array}{cc}
2 & 0 \\
1 & 1 / 2
\end{array}\right]
$$

The \mathcal{B}-coordinates of a vector \mathbf{x} are its coefficients in the basis \mathcal{B}. They are recorded as the vector $[\mathbf{x}]_{\mathcal{B}}$. When we do not indicate the basis, then we have the standard basis $\left\{\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}\right\}$ in mind. The coordinates in the standard basis are given by the equation

$$
\begin{equation*}
[\mathbf{x}]=P_{\mathcal{B}} \cdot[\mathbf{x}]_{\mathcal{B}} . \tag{1}
\end{equation*}
$$

Example. If $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $P_{\mathcal{B}}$ is the matrix above, then $[\mathbf{x}]=\left[\begin{array}{cc}2 & 0 \\ 1 & 1 / 2\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}6 \\ 4\end{array}\right]$.
If you are given $[\mathbf{x}]$ and you are looking for $[\mathbf{x}]_{\mathcal{B}}$ then (1) implies

$$
\begin{equation*}
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \cdot[\mathbf{x}] . \tag{2}
\end{equation*}
$$

Example. For the matrix $P_{\mathcal{B}}$ as above we have $P_{\mathcal{B}}^{-1}=\left[\begin{array}{cc}1 / 2 & 0 \\ -1 & 2\end{array}\right]$. Hence for the vector $[\mathbf{x}]=\left[\begin{array}{l}6 \\ 4\end{array}\right]$, we get

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}
1 / 2 & 0 \\
-1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

If you are given a second basis \mathcal{C} and a vector $[\mathbf{x}]_{\mathcal{B}}$ given in the basis \mathcal{B}, and you want to find $[\mathbf{x}]_{\mathcal{C}}$, you may do so by combining equations (1) and (2) as follows.

$$
\begin{equation*}
[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} \cdot[\mathbf{x}]=P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}} \cdot[\mathbf{x}]_{\mathcal{B}} . \tag{3}
\end{equation*}
$$

The matrix $P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}}$ is denoted by $P_{\mathcal{C} \leftarrow \mathcal{B}}$ in our textbook.
Example. For the matrix

$$
P_{\mathcal{C}}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

we have

$$
P_{\mathcal{C}}^{-1}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] \quad \text { and } \quad P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{C}}^{-1} \cdot P_{\mathcal{B}}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 0 \\
1 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
3 / 2 & 1 / 4 \\
-1 / 2 & 1 / 4
\end{array}\right] .
$$

For the matrix $[\mathbf{x}]_{B}$ as above, we get

$$
[\mathbf{x}]_{\mathcal{C}}=\left[\begin{array}{cc}
3 / 2 & 1 / 4 \\
-1 / 2 & 1 / 4
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1
\end{array}\right] .
$$

Note that, since we know $[\mathbf{x}]$ in this example, we may also find $[\mathbf{x}]_{\mathcal{C}}$ using (2) as follows:

$$
[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C}}^{-1} \cdot[\mathbf{x}]=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1
\end{array}\right] .
$$

The matrix [T] of a linear transformation T is the matrix, whose i-th column is $T\left(\mathbf{e}_{i}\right)$.
Example. The matrix of the rotation around the origin by positive 90 degree is $[T]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
Given a vector $[\mathbf{x}]$, the coordinates of $T(\mathbf{x})$ are given by

$$
\begin{equation*}
[T(\mathbf{x})]=[T] \cdot[\mathbf{x}] . \tag{4}
\end{equation*}
$$

Example. The rotation above takes our sample vector $[\mathbf{x}]$ into

$$
[T(\mathbf{x})]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\left[\begin{array}{c}
-4 \\
6
\end{array}\right]
$$

The effect of the transformation T in a different basis \mathcal{B} can be expressed using (1) and (2) as follows:

$$
[T(\mathbf{x})]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \cdot[T(\mathbf{x})]=P_{\mathcal{B}}^{-1} \cdot[T] \cdot[\mathbf{x}]=P_{\mathcal{B}}^{-1} \cdot[T] \cdot P_{\mathcal{B}} \cdot[\mathbf{x}]_{\mathcal{B}} .
$$

Hence the matrix of the transformation T in the basis \mathcal{B} is

$$
\begin{equation*}
[T]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \cdot[T] \cdot P_{\mathcal{B}} . \tag{5}
\end{equation*}
$$

Example. The matrix of the rotation around the origin by positive 90 degree in our basis \mathcal{B} is

$$
\left[\begin{array}{cc}
1 / 2 & 0 \\
-1 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 0 \\
1 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 / 2 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 0 \\
1 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
-1 / 2 & -1 / 4 \\
5 & 1 / 2
\end{array}\right]
$$

Rotating around the origin by positive 90 degrees our vector with \mathcal{B}-coordinates $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ gives

$$
[T(\mathbf{x})]_{\mathcal{B}}=\left[\begin{array}{cc}
-1 / 2 & -1 / 4 \\
5 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
16
\end{array}\right]
$$

The standard coordinates of this vector are

$$
[T(\mathbf{x})]=\left[\begin{array}{cc}
2 & 0 \\
1 & 1 / 2
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
16
\end{array}\right]=\left[\begin{array}{c}
-4 \\
6
\end{array}\right]
$$

