Sample Test 1

This list of sample test questions is subject to updates until we review for the test
Last update: Thursday, September 24, 2020

1. Determine the quadrant in which $(-2,-4)$ lies.
2. Find the intercepts of $y=(x-3)(x+1)$.
3. Find the intercepts of $y=x^{2}-3 x+2$.
4. Find the equation of the line passing through $(1,2)$ and $(2,5)$. Write your answer in slope-intercept form.
5. Find the slope of the line $y=3$.
6. Find the slope of the line $x=2$.
7. Find the equation of the line passing through $(5,2)$, perpendicular to the line given by $y=3 / 2 \cdot x-2$.
8. Find the slope and the y-intercept of the line $2 x-3 y=6$.
9. Sandy rents a shop to sell cookies for 800 dollars per month. It costs her 0.50 dollars to produce a cookie which she sells for 3 dollars each. Write down the cost function, the revenue function, and calculate how many cookies does she have to sell in a month to break even?
10. Write the inequality $x \leq 2.5$ in interval notation.
11. Solve the linear inequality $2 x-1<3 x+2$.
12. Solve the inequality $\left|\frac{2 x-3}{3}\right| \geq 5$. Write your answer in interval notation.
13. Solve the inequality $(x-1) x(x+3) \geq 0$. Write your answer in interval notation.
14. Solve the inequality $x^{2}-8<1$. Write your answer using inequality notation.
15. Solve the inequality $x(x-1)(x+2)>0$. Write your answer in interval notation.
16. Solve the inequality $x^{2}-50 \leq-1$. Write your answer in interval notation.
17. Solve the inequality $x^{2}-5 x \geq-6$. Write your answer in interval notation.
18. Solve the inequality $\frac{x-7}{x+1} \geq 0$. Write your answer in interval notation.
19. Find the domain of $\sqrt{3 x-4}$. Write your answer in interval notation.
20. Find the domain of $\frac{1}{\sqrt{3-x}}$. Write your answer in interval notation.

Solutions:

1. Q3.
2. To find the y intercept we substitute $x=0$ and get $y=-3$. To find the x-intercepts we solve $0=(x-3)(x+1)$ and get $x=3$ or $x=-1$.
3. The right hand side can be factored as $(x-1)(x-2)$. To find the y intercept we substitute $x=0$ and get $y=2$. To find the x-intercepts we solve $0=(x-1)(x-2)$ and get $x=1$ or $x=2$.
4. The slope is $m=\frac{5-2}{2-1}=3$. The point-slope equation is $y-2=3(x-1)$. After rearranging we get $y=3 x-1$.
5. 0 .
6. undefined.
7. The slope of the line $y=3 / 2 \cdot x-2$ is $3 / 2$. The perpendicular slope is $-2 / 3$. The point slope equation is $y-2=-2 / 3 \cdot(x-5)$. After rearranging we get $y=-2 / 3 \cdot x+16 / 3$.
8. Solving for y we get $2 x-6=3 y$ and $2 / 3 \cdot x-2=y$. The slope is $2 / 3$, the y-intercept is -2 .
9. The cost function is $C(x)=800+0.5 x$, the revenue function is $R(x)=3 x$. To find the break-even point we must solve the equation $800+0.5 x=3 x$. We get $x=320$.
10. $(-\infty, 2.5]$.
11. We get $2 x-3<3 x$ and $-3<x$.
12. The inequality is equivalent to

$$
\frac{2 x-3}{3} \leq-5 \text { or } \frac{2 x-3}{3} \geq 5 .
$$

Multiplying by 3 gives

$$
2 x-3 \leq-15 \text { or } 2 x-3 \geq 15 .
$$

Add 3:

$$
2 x \leq-12 \text { or } 2 x \geq 18
$$

Divide by 2 :

$$
x \leq-6 \text { or } 2 x \geq 9 .
$$

The answer in interval notation is $(-\infty,-6] \cup[9, \infty)$.
13. The critical points are $x=-3, x=0$ and $x=1$. Using test points we see that the value of $(x-1) x(x+3)$ is negative for $x<-3$, positive for $-3<x<0$, negative for $0<x<1$, and positive for $1<x$. The answer includes those values for x where $(x-1) x(x+3)$ is positive or zero.

The answer in interval notation is $[-3,0] \cup[1, \infty)$.
14. We need 0 on one side so we subtract 1 on both sides and get $x^{2}-9<0$, that is, $(x-3)(x+3)<0$. Following the steps in the previous solution we get the critical points -3 and 3 and that $(x-3)(x+3)$ is negative exactly when $-3<x<3$.

Another way to solve this is to add 8 to the original inequality and get $x^{2}<9$. This is equivalent to $|x|<3$, which gives the same final answer.
15. The critical points are $-2,0,1$. Using test points or analyzing the signs of the factors we get that the left hand side is positive for $x>1$ or $-2<x<0$. In interval notation this is the set $(-2,0) \cup(1, \infty)$.
16. Adding 1 to both sides gives $x^{2}-49 \leq 0$. The left hand side can be factored as $(x-7)(x+7)$. The left hand side is negative or zero when $-7 \leq x \leq 7$. In interval notation this is $[-7,7]$.
17. Adding 6 to both sides gives $x^{2}-5 x+6 \geq 0$. The left hand side can be factored as $(x-2)(x-3)$. The left hand side is positive or zero when $x \leq 2$ or $x \geq 3$. In interval notation this is $(-\infty, 2] \cup[3, \infty)$.
18. The critical points are 7 and -1 . The left hand side is positive when $x>7$ or $x<-1$, and it is zero at $x=7$. It is not defined at $x=-1$. The solution is $x<-1$ or $x \geq 7$. In interval notation this is $(-\infty,-1) \cup[7, \infty)$.
19. We must solve the inequality $3 x-4 \geq 0$. The solution is $x \geq 4 / 3$. In interval notation we get $[3 / 4, \infty)$.
20. The square root is defined only for nonnegative numbers, but we also cannot divide by zero. We must solve the inequality $3-x>0$. The solution is $x<3$, which is $(-\infty,-3)$ in interval notation.

