The Input: A complete graph with a symmetric $(c(u, v)=c(v, u))$ weight function satisfying the triangle inequality $(c(u, v)+c(v, w) \geq c(u, w))$.

The Algorithm:

1. We pick any vertex y_{1} and define C_{1} as the empty tour from y_{1} to y_{1}.
2. We set z_{2} as the vertex nearest to y_{1} and define C_{2} as the round-trip $y_{1}-z_{2}-y_{1}$. (This is the only phase when we use the same edge twice.)
3. While k is less than the number of vertices we repeat the following step. Select y_{k} and z_{k} to be a pair of vertices such that y_{k} is on C_{k}, z_{k} is not on C_{k} and $c\left(y_{k}, z_{k}\right)$ is minimal among all distances $c(y, z)$ such that y is on C_{k} and z is not on C_{k}. Let y_{k}^{\prime} be the vertex immediately preceding y_{k} on the tour C_{k}. The tour C_{k+1} is obtained from C_{k} by inserting z_{k} between y_{k}^{\prime} and y_{k}.
4. The output is the Hamilton cycle C_{n}, where n is the number of vertices.

Theorem 1 The cost of the approximate traveling salesperson tour is at most twice the minimum cost.

To prove this theorem, we create a sequence $S_{1}, S_{2}, \ldots, S_{n}$ of subgraphs with the following properties:
(S1) S_{1} is a Hamiltonian path obtained from a cheapest Hamiltonian circuit C^{*} by removing one of the maximum weight edges.
(S2) For each $k \in\{1, \ldots, n-1\}, S_{k+1}$ is obtained from S_{k} by removing one edge e_{k}.
(S3) For each $k \in\{1, \ldots, n-1\}$, the cost of C_{k+1} exceeds the cost of C_{k} by at most twice the cost of e_{k}.

If we are able to construct such a sequence of subgraphs we are done: the cost of C_{n} is at most the cost of the edges in S_{1}, which is less than twice the cost of C^{*}. In order to be able to show that we can find an appropriate S_{k+1} in each step, along the way we show that each S_{k} has the following properties:
(S4) Each connected component of S_{k} has exactly one vertex on C_{k}.
(S5) Each vertex that is not on C_{k} belongs to some connected component of S_{k}.

Figure 1: $C_{k} \cup S_{k}$
Note that, for $k=1$, the graph C_{1} is a single vertex, and the graph S_{1} is a Hamiltonian path containing all vertices, so conditions (S4) and (S5) are satisfied. A typical situation is shown in Figure 1, where
the edges of C_{k} are represented as dashed edges, and the edges of S_{k} are represented as continuous edges. The vertices y_{k}, y_{k}^{\prime} and z_{k} are defined in the approximate traveling salesperson tour algorithm. The vertex z_{k} is not on C_{k}, but, by property (S5), it belongs to a connected component of S_{k}. This connected component is a path (obtained from the path S_{1} after deleting some edges) which, by (S4), has exactly one vertex on C_{k} : let us call this vertex $y_{k}^{\prime \prime}$. In the connected component of S_{k} containing z_{k}, there is a unique path from z_{k} to $y_{k}^{\prime \prime}$. Let z_{k}^{\prime} be the vertex adjacent to $y_{k}^{\prime \prime}$ in this path. We now define S_{k+1} as the graph obtained from S_{k} by removing the edge $e_{k}=\left\{z_{k}^{\prime}, y_{k}^{\prime \prime}\right\}$, see Figure 2 It is

Figure 2: $C_{k+1} \cup S_{k+1}$
easy to see that S_{k+1} also satisfies the properties (S4) and (S5), and it is constructed obeying the rule (S2). We only need to show it satisfies (S3). When we create C_{k+1} from C_{k}, the weight changes by $c\left(y_{k}^{\prime}, z_{k}\right)+c\left(z_{k}, y_{k}\right)-c\left(y_{k}^{\prime}, y_{k}\right)$. By the triangle inequality, we have

$$
c\left(y_{k}^{\prime}, z_{k}\right) \leq c\left(z_{k}, y_{k}\right)+c\left(y_{k}^{\prime}, y_{k}\right), \quad \text { implying } \quad c\left(y_{k}^{\prime}, z_{k}\right)+c\left(z_{k}, y_{k}\right)-c\left(y_{k}^{\prime}, y_{k}\right) \leq 2 c\left(z_{k}, y_{k}\right)
$$

Thus the weight of C_{k+1} exceeds the weight of C_{k} by at most $2 c\left(z_{k}, y_{k}\right)$, which, by the selection rule for y_{k} and z_{k}, is at most $2 c\left(z_{k}^{\prime}, y_{k}^{\prime \prime}\right)$.

