The approximate traveling salesperson tour algorithm

The Input: A complete graph with a symmetric (c(u, v) = c(v, u)) weight function satisfying the triangle inequality $(c(u, v) + c(v, w) \ge c(u, w))$.

The Algorithm:

- 1. We pick any vertex y_1 and define C_1 as the empty tour from y_1 to y_1 .
- 2. We set z_2 as the vertex nearest to y_1 and define C_2 as the round-trip $y_1 z_2 y_1$. (This is the only phase when we use the same edge twice.)
- 3. While k is less than the number of vertices we repeat the following step. Select y_k and z_k to be a pair of vertices such that y_k is on C_k , z_k is not on C_k and $c(y_k, z_k)$ is minimal among all distances c(y, z) such that y is on C_k and z is not on C_k . Let y'_k be the vertex immediately preceding y_k on the tour C_k . The tour C_{k+1} is obtained from C_k by inserting z_k between y'_k and y_k .
- 4. The output is the Hamilton cycle C_n , where n is the number of vertices.

Theorem 1 The cost of the approximate traveling salesperson tour is at most twice the minimum cost.

To prove this theorem, we create a sequence S_1, S_2, \ldots, S_n of subgraphs with the following properties:

- (S1) S_1 is a Hamiltonian path obtained from a cheapest Hamiltonian circuit C^* by removing one of the maximum weight edges.
- (S2) For each $k \in \{1, \ldots, n-1\}$, S_{k+1} is obtained from S_k by removing one edge e_k .
- (S3) For each $k \in \{1, \ldots, n-1\}$, the cost of C_{k+1} exceeds the cost of C_k by at most twice the cost of e_k .

If we are able to construct such a sequence of subgraphs we are done: the cost of C_n is at most the cost of the edges in S_1 , which is less than twice the cost of C^* . In order to be able to show that we can find an appropriate S_{k+1} in each step, along the way we show that each S_k has the following properties:

- (S4) Each connected component of S_k has exactly one vertex on C_k .
- (S5) Each vertex that is not on C_k belongs to some connected component of S_k .

Figure 1: $C_k \cup S_k$

Note that, for k = 1, the graph C_1 is a single vertex, and the graph S_1 is a Hamiltonian path containing all vertices, so conditions (S4) and (S5) are satisfied. A typical situation is shown in Figure 1, where

the edges of C_k are represented as dashed edges, and the edges of S_k are represented as continuous edges. The vertices y_k , y'_k and z_k are defined in the approximate traveling salesperson tour algorithm. The vertex z_k is not on C_k , but, by property (S5), it belongs to a connected component of S_k . This connected component is a path (obtained from the path S_1 after deleting some edges) which, by (S4), has exactly one vertex on C_k : let us call this vertex y''_k . In the connected component of S_k containing z_k , there is a unique path from z_k to y''_k . Let z'_k be the vertex adjacent to y''_k in this path. We now define S_{k+1} as the graph obtained from S_k by removing the edge $e_k = \{z'_k, y''_k\}$, see Figure 2 It is

Figure 2: $C_{k+1} \cup S_{k+1}$

easy to see that S_{k+1} also satisfies the properties (S4) and (S5), and it is constructed obeying the rule (S2). We only need to show it satisfies (S3). When we create C_{k+1} from C_k , the weight changes by $c(y'_k, z_k) + c(z_k, y_k) - c(y'_k, y_k)$. By the triangle inequality, we have

 $c(y'_k, z_k) \le c(z_k, y_k) + c(y'_k, y_k), \quad \text{implying} \quad c(y'_k, z_k) + c(z_k, y_k) - c(y'_k, y_k) \le 2c(z_k, y_k).$

Thus the weight of C_{k+1} exceeds the weight of C_k by at most $2c(z_k, y_k)$, which, by the selection rule for y_k and z_k , is at most $2c(z'_k, y''_k)$.