
The approximate traveling salesperson tour algorithm

The Input: A complete graph with a symmetric (c(u, v) = c(v, u)) weight function satisfying the
triangle inequality (c(u, v) + c(v, w) ≥ c(u,w)).

The Algorithm:

1. We pick any vertex y1 and define C1 as the empty tour from y1 to y1.

2. We set z2 as the vertex nearest to y1 and define C2 as the round-trip y1 − z2 − y1. (This is the
only phase when we use the same edge twice.)

3. While k is less than the number of vertices we repeat the following step. Select yk and zk to
be a pair of vertices such that yk is on Ck, zk is not on Ck and c(yk, zk) is minimal among all
distances c(y, z) such that y is on Ck and z is not on Ck. Let y′k be the vertex immediately
preceding yk on the tour Ck. The tour Ck+1 is obtained from Ck by inserting zk between y′k and
yk.

4. The output is the Hamilton cycle Cn, where n is the number of vertices.

Theorem 1 The cost of the approximate traveling salesperson tour is at most twice the minimum
cost.

To prove this theorem, we create a sequence S1, S2, . . . , Sn of subgraphs with the following properties:

(S1) S1 is a Hamiltonian path obtained from a cheapest Hamiltonian circuit C∗ by removing one of
the maximum weight edges.

(S2) For each k ∈ {1, . . . , n− 1}, Sk+1 is obtained from Sk by removing one edge ek.

(S3) For each k ∈ {1, . . . , n− 1}, the cost of Ck+1 exceeds the cost of Ck by at most twice the cost of
ek.

If we are able to construct such a sequence of subgraphs we are done: the cost of Cn is at most the
cost of the edges in S1, which is less than twice the cost of C∗. In order to be able to show that
we can find an appropriate Sk+1 in each step, along the way we show that each Sk has the following
properties:

(S4) Each connected component of Sk has exactly one vertex on Ck.

(S5) Each vertex that is not on Ck belongs to some connected component of Sk.

z′
k

yk

y′
k

y′′
k

zk

Figure 1: Ck ∪ Sk

Note that, for k = 1, the graph C1 is a single vertex, and the graph S1 is a Hamiltonian path containing
all vertices, so conditions (S4) and (S5) are satisfied. A typical situation is shown in Figure 1, where

1



the edges of Ck are represented as dashed edges, and the edges of Sk are represented as continuous
edges. The vertices yk, y′k and zk are defined in the approximate traveling salesperson tour algorithm.
The vertex zk is not on Ck, but, by property (S5), it belongs to a connected component of Sk. This
connected component is a path (obtained from the path S1 after deleting some edges) which, by (S4),
has exactly one vertex on Ck: let us call this vertex y′′k . In the connected component of Sk containing
zk, there is a unique path from zk to y′′k . Let z′k be the vertex adjacent to y′′k in this path. We now
define Sk+1 as the graph obtained from Sk by removing the edge ek = {z′k, y′′k}, see Figure 2 It is

z′
k

yk

y′
k

y′′
k

zk

Figure 2: Ck+1 ∪ Sk+1

easy to see that Sk+1 also satisfies the properties (S4) and (S5), and it is constructed obeying the rule
(S2). We only need to show it satisfies (S3). When we create Ck+1 from Ck, the weight changes by
c(y′k, zk) + c(zk, yk)− c(y′k, yk). By the triangle inequality, we have

c(y′k, zk) ≤ c(zk, yk) + c(y′k, yk), implying c(y′k, zk) + c(zk, yk)− c(y′k, yk) ≤ 2c(zk, yk).

Thus the weight of Ck+1 exceeds the weight of Ck by at most 2c(zk, yk), which , by the selection rule
for yk and zk, is at most 2c(z′k, y

′′
k).

2


