The dual to the transportation problem

The transportation problem may be phrased as follows. Suppose we have m warehouses with a supply vector $\left(s_{1}, \ldots, s_{m}\right)$ and n stores with a demand vector $\left(d_{1}, \ldots, d_{n}\right)$. We may assume that

$$
s_{1}+s_{2}+\cdots+s_{m}=d_{1}+d_{2}+\cdots+d_{n} .
$$

(If not, we add a dummy warehouse or a dummy store.) We also assume that we are given a unit transportation cost $c_{i, j}$ between warehouse i and store j. The primal transportation problem is the following: minimize $\sum_{i, j} c_{i, j} x_{i, j}$, subject to

$$
\begin{gathered}
\sum_{j=1}^{n} x_{i, j}=s_{i} \quad \text { for } i=1,2, \ldots, m \text { and } \\
\sum_{i=1}^{n} x_{i, j}=d_{j} \quad \text { for } j=1,2, \ldots, n
\end{gathered}
$$

In other word, we want to find a flow from the warehouses to the stores, minimizing transportation costs. The dual transportation problem is the following. Maximize $\sum_{j=1}^{n} d_{j} v_{j}-\sum_{i=1}^{m} s_{i} u_{i}$ subject to

$$
c_{i, j} \geq v_{j}-u_{i} \quad \text { for all } i, j .
$$

In other words, we want to maximize profit for a transportation company that offers buying price u_{i} at warehouse i and selling price v_{j} at store j, such that the price difference $v_{j}-u_{i}$ does not exceed the actual transportation cost along the edge.

Lemma 1 For any solution ($x_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n$) of the primal problem, and any solution of ($u_{1}, \ldots, u_{m} ; v_{1}, \ldots, v_{n}$) of the dual problem we have

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i, j} x_{i, j} \geq \sum_{j=1}^{m} v_{j} d_{j}-\sum_{i=1}^{n} u_{i} s_{i} .
$$

In other words, any solution to the primal problem is greater than equal to any solution of the dual problem.

Proof: We have

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i, j} x_{i, j} \geq \sum_{i=1}^{m} \sum_{j=1}^{n}\left(v_{j}-u_{i}\right) x_{i, j}=\sum_{j=1}^{m} v_{j} \sum_{i=1}^{n} x_{i, j}-\sum_{i=1}^{n} u_{i} \sum_{j=1}^{m} x_{i, j}=\sum_{j=1}^{m} v_{j} d_{j}-\sum_{i=1}^{n} u_{i} s_{i} .
$$

In Tucker's "Applied Combinatorics", 6th Ed we first find a spanning tree solution to the primal problem, using the NW corner rule. The corresponding system of prices ($u_{1}, \ldots, u_{m} ; v_{1}, \ldots, v_{n}$) satisfies $c_{i, j}=\left(v_{j}-u_{i}\right)$ for the edges in the spanning tree but we may have $c_{i, j}<\left(v_{j}-u_{i}\right)$ for some edge not in the spanning tree. We change the tree we change the flow, repeat until $c_{i, j} \geq\left(v_{j}-u_{i}\right)$ holds for all edges. At this point we have a valid solution for the dual problem and

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i, j} x_{i, j}=\sum_{j=1}^{m} v_{j} d_{j}-\sum_{i=1}^{n} u_{i} s_{i},
$$

since $c_{i, j}=v_{j}-u_{i}$ for edges in the spanning tree and these are the edges where $x_{i, j}$ may be positive.

