
Network flows

A network is a directed graph G = (V,E) with a pair (s, t) of distinguished vertices and a positive
real number k(e) associated to each edge e. The vertex s is the source, the vertex t is the sink and
the number k(e) is the capacity of the directed edge e. A flow is a function f : E → R satisfying the
following conditions:

1. 0 ≤ f(e) ≤ k(e) holds for all e ∈ E. (The flow is subject to the capacity constraints.)

2. Introducing In(v) and Out(v) for the set of edges ending in, respectively starting at v,∑
e∈In(v)

f(e) =
∑

e∈Out(v)

f(e)

holds for all v ∈ V \ {s, t}. (For any vertex that is not the source or the sink, what flows into
the vertex is what flows out of the vertex.)

An s− t cut (S, T ) is an ordered set partition of the vertex set V into two parts, such that s ∈ S and
t ∈ T . The net flow from S to T is

f(S, T ) :=
∑

u∈S,v∈T

∑
e∈Out(u)∩In(v)

f(e)−
∑

v∈S,u∈T

∑
e∈Out(u)∩In(v)

f(e).

To simplify writing sums we introduce the notation

−→
f (X,Y ) :=

∑
u∈X,v∈Y

∑
e∈Out(u)∩In(v)

f(e)

for any pair (X,Y ) of disjoint sets of vertices. We may rewrite f(S, T ) as
−→
f (S, T )−

−→
f (T, S).

Proposition 1 For a fixed flow f : E → R the value of f(S, T ) is the same for all s−t cuts (S, T ). In
particular, it is the same as f({s}, V \{s}) (the net flow from the source) and the same as f(V \{t}, {t})
(the flow into the sink).

Proof: Let us fix an s− t cut (S, T ). Summing the second flow condition for all v ∈ S−{s} we obtain∑
v∈S−{s}

∑
e∈Out(v)

f(e) =
∑

v∈S−{s}

∑
e∈In(v)

f(e).

Observe that f(e) is counted on both sides if both ends of e belong to S \ {s}. Subtracting all such
values, we obtain

−→
f (S \ {s}, T ) +

−→
f (S \ {s}, {s}) =

−→
f (T, S \ {s}) +

−→
f ({s}, S \ {s}).

Adding
−→
f ({s}, T ) to both sides and simplifying yields

−→
f (S, T ) +

−→
f (S \ {s}, {s}) =

−→
f (T, S \ {s}) +

−→
f ({s}, V \ {s}).

Adding
−→
f (T, {s}) to both sides yields

−→
f (S, T ) +

−→
f (V \ {s}, {s}) =

−→
f (T, S) +

−→
f ({s}, V \ {s}).

Rearranging yields

−→
f (S, T )−

−→
f (T, S) =

−→
f ({s}, V \ {s})−

−→
f (V \ {s}, {s}).
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The left hand side is f(S, T ), the right hand side is f({s}, V \ {s}). 3

We call the common value of f(S, T ) for all s-t cuts the (net) total flow.

The capacity k(S, T ) of an s-t cut is defined by

k(S, T ) =
∑

u∈S,v∈T
k(u, v).

Lemma 1 For any s-t cut (S, T ) we have f(S, T ) ≤ k(S, T )

This is obvious, the value of
−→
f (S, T ) is at most k(S, T ), and the value of −

−→
f (T, S) is at most 0.

Theorem 1 (Ford-Fulkerson) For any network, the maximum flow value is equal to the minimum
s-t cut capacity.

Proof: We can think of a flow as an |E|-dimensional vector. The flow value is a linear function of
the input coordinates, hence it is continuous. The flow conditions defined a closed bounded domain,
hence the flow value does have a maximum on this domain, there is a maximum flow.

For any edge e ∈ Out({u}) ∩ In({v}), let us introduce a new edge e∗ ∈ Out({v}) ∩ In({u}). We
denote the set of new (reversed) edges by E∗.

Define the slack s(e) as k(e) − f(e) for each e ∈ E and the slack s(e∗) as f(e) for each e∗ ∈ E∗.
An augmenting path is a directed path s = u0 → u1 → · · · → um−1 → um such that for each (ui, ui+1)
there is an edge in E∪E∗ from ui to ui+1 whose slack is positive. If there is an augmenting path from
s to t we may increase the flow value by a small ε > 0 as follows: for each i if there is an e ∈ E from
ui to ui+1, we increase f(e) by ε, and if there is an e∗ ∈ E∗ from ui to ui+1 then we decrease f(e) by
ε. The value of the resulting flow increases by ε.

Hence, for a maximum flow, there is no augmenting path from s to t. Define the s-t cut (S, T ) by
setting S as the set of vertices that are reachable from s with an augmenting path. (The set T is its
complement and it contains the sink). By definition the slack of all edges (e or e∗) starting in S and

ending in T is zero: we have k(S, T ) −
−→
f (S, T ) = 0 (for the edges in E) and

−→
f (T, S) = 0 (for the

edges in E∗). Therefore f(S, T ) = k(S, T ). 3
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