Network flows

A network is a directed graph G = (V, E) with a pair (s, t) of distinguished vertices and a positive
real number k(e) associated to each edge e. The vertex s is the source, the vertex ¢ is the sink and
the number k(e) is the capacity of the directed edge e. A flow is a function f : E — R satisfying the
following conditions:

1. 0 < f(e) < k(e) holds for all e € E. (The flow is subject to the capacity constraints.)

2. Introducing In(v) and Out(v) for the set of edges ending in, respectively starting at v,
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holds for all v € V'\ {s,t}. (For any vertex that is not the source or the sink, what flows into
the vertex is what flows out of the vertex.)

An s —t cut (S,T) is an ordered set partition of the vertex set V' into two parts, such that s € S and
t € T. The net flow from S to T is
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To simplify writing sums we introduce the notation
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for any pair (X,Y) of disjoint sets of vertices. We may rewrite f(S,T) as ?(S, T)— ?(T, S).

Proposition 1 For a fized flow f : E — R the value of f(S,T) is the same for all s—t cuts (S,T). In
particular, it is the same as f({s}, V\{s}) (the net flow from the source) and the same as f(V\{t},{t})
(the flow into the sink).

Proof: Let us fix an s —¢ cut (S,7). Summing the second flow condition for all v € S — {s} we obtain
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Observe that f(e) is counted on both sides if both ends of e belong to S\ {s}. Subtracting all such
values, we obtain

FENEHT) + FS\ {sh{s) = TS\ {s}) + F ({s}, 5\ {s}).
Adding 7({3}, T) to both sides and simplifying yields
TS 1)+ F(S\{sh{sh) = F(T, 8\ {s}) + F({s},V \ {s}).
Adding 7(T, {s}) to both sides yields

TS + T\ {sh{sh) = F(T,9) + F({shV\ {s}).

Rearranging yields

FST) = F(@8) = F{sh,V\{sh) = F(V\ {s} {s}).



The left hand side is f(S,T), the right hand side is f({s}, V' \ {s}). <&

We call the common value of f(S,T) for all s-t cuts the (net) total flow.

The capacity k(S,T) of an s-t cut is defined by

ES,T)= > k(uv).
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Lemma 1 For any s-t cut (S,T) we have f(S,T) < k(S,T)
This is obvious, the value of ?(S, T) is at most k(S,T"), and the value of —7(T7 S) is at most 0.

Theorem 1 (Ford-Fulkerson) For any network, the mazimum flow value is equal to the minimum
s-t cut capacity.

Proof: We can think of a flow as an |E|-dimensional vector. The flow value is a linear function of
the input coordinates, hence it is continuous. The flow conditions defined a closed bounded domain,
hence the flow value does have a maximum on this domain, there is a maximum flow.

For any edge e € Out({u}) N In({v}), let us introduce a new edge e* € Out({v}) NIn({u}). We
denote the set of new (reversed) edges by E*.

Define the slack s(e) as k(e) — f(e) for each e € E and the slack s(e*) as f(e) for each e* € E*.
An augmenting path is a directed path s = ug — w3 — + -+ — Uym—1 — Uy, such that for each (u;, uit1)
there is an edge in FU E* from u; to u; 11 whose slack is positive. If there is an augmenting path from
s to t we may increase the flow value by a small € > 0 as follows: for each ¢ if there is an e € F from
u; to u;y1, we increase f(e) by €, and if there is an e* € E* from u; to u;+1 then we decrease f(e) by
€. The value of the resulting flow increases by e.

Hence, for a maximum flow, there is no augmenting path from s to ¢. Define the s-t cut (S,T") by
setting S as the set of vertices that are reachable from s with an augmenting path. (The set T is its
complement and it contains the sink). By definition the slack of all edges (e or e*) starting in .S and
ending in 7' is zero: we have k(S,T") — ?(S, T) = 0 (for the edges in E) and 7(T, S) = 0 (for the
edges in E*). Therefore f(S,T) = k(S,T). <&



