## Kruskal's and Prim's algorithm

## 1 Kruskal's algorithm to find a minimum weight spanning tree

The method consists of

- Sorting the edges by increasing weight;
- Constructing a spanning tree by adding one of the smallest available edges in each step.

An edge is available if it has not been selected before and it does not close a cycle with any of the previously selected edges.

Theorem 1 Kruskal's algorithm yields a minimum weight spanning tree.

Proof: Assume Kruskal's algorithm has selected the edges $e_{1}, \ldots, e_{v-1}$, in this order. These edges form a spanning tree $T$. Assume $T^{\prime}$ is a minimum weight spanning tree that shares the largest possible number of common edges with $T$. Sort the edges of $T^{\prime}$ by increasing order of weights, assume that we obtain the list $f_{1}, f_{2}, \ldots, f_{v-1}$. (Among edges of same weight we may assume that we always list the common elements of $T$ and $T^{\prime}$ first, in the same order as in $T$.) If $T$ and $T^{\prime}$ are not equal then there is an $i$ such that $e_{1}=f_{1}, e_{2}=f_{2}, \ldots, e_{i-1}=f_{i-1}$, but $e_{i} \neq f_{i}$. Since $e_{i}$ is not an edge of $T^{\prime}$, it closes a cycle in it. Assume this cycle is $\left(e_{i}, f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{k}}\right)$. Here at least one of $f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{k}}$, say $f_{i_{j}}$ has the property that is does not belong to $\left\{e_{1}, \ldots, e_{i-1}\right\}$ nor does it close a cycle with the set $\left\{e_{1}, \ldots, e_{i-1}\right\}$ : in the contrary event we can replace each $f_{i_{j}}$ with the corresponding walk between its endpoints with edges from $\left\{e_{1}, \ldots, e_{i-1}\right\}$ and concatenating this walks would yield a walk between the endpoints of $e_{1}$, using only edges from $\left\{e_{1}, \ldots, e_{i-1}\right\}$. Since we were allowed to choose $e_{i}$ instead of $f_{i_{j}}$ in step $i$, we have $w\left(e_{i}\right) \leq w\left(f_{i_{j}}\right)$. Thus the tree $T^{\prime \prime}:=T^{\prime}-f_{i_{j}}+e_{i}$ can not have larger weight than $T^{\prime}$. Since $T^{\prime}$ has minimum weight, the same is true for $T^{\prime \prime}$ (and so $w\left(e_{i}\right)=w\left(f_{i_{j}}\right)$ ). The tree $T^{\prime \prime}$ has one more edge in common with $T$, in contradiction with the choice of $T^{\prime}$. This contradiction is avoided only if $T=T^{\prime}$ and so $T$ must be a minimum weight spanning tree.

## 2 Prim's algorithm

When a graph has a lot of edges, the first phase of Kruskal's algorithm might take long. Prim's algorithm consists of modifying Kruskal's algorithm by considering only those edges in each step that form a connected subgraph with the previously selected edges. We start with an arbitrarily selected vertex $x_{0}$. After $i-1$ steps we have selected a subtree on the vertex set $\left\{x_{0}, \ldots, x_{i-1}\right\}$. In step $i$ we consider all edges of the form $\left(x_{j}, y\right)$ where $1 \leq j \leq i-1$ and $y \notin\left\{x_{0}, \ldots, x_{i-1}\right\}$, and pick an edge $\left(x_{j}, x_{i}\right)$ of minimum weight among them. (This determines the selection of $x_{i}$.)

Theorem 2 Prim's algorithm yields a minimum weight spanning tree.

Proof: The proof may be obtained by modifying the proof for Kruskal's algorithm as follows. Assume again that the output of our algorithm is $T$ and that we added the edges $e_{1}, \ldots, e_{v-1}$, in this order. Let $T^{\prime}$ be a minimum weight spanning tree that has the largest possible number of common edges with $T$. If $T$ is not minimum weight then $T \neq T^{\prime}$ and there is a first edge $e_{i}$ on the list that does not belong to $T^{\prime}$. Removing $e_{i}$ from $T$ yields two components: the vertices $\left\{x_{0}, \ldots, x_{i-1}\right\}$ on the one side and $V \backslash\left\{x_{0}, \ldots, x_{i-1}\right\}$ on the other side. Since $e_{i}$ does not belong to $T^{\prime}$, it closes a cycle in it. This cycle contains a second edge $f$ connecting a vertex from $\left\{x_{0}, \ldots, x_{i-1}\right\}$ with a vertex from $V \backslash\left\{x_{0}, \ldots, x_{i-1}\right\}$. Since we chose $e_{i}$ in step $i$, we must have $w\left(e_{i}\right) \leq w(f)$. Consider now the tree $T^{\prime \prime}:=T^{\prime}-f+e_{i}$. It is minimum weight, and has one more edge in common with $T$. Again we reach a contradiction.

