
Semigroups, monoids, groups and rings

(Optional reading)

1 Semigroups

A semigroup a set with an associative binary operation (multiplication). The associative law states
that (ab)c = a(bc) holds for any three elements a, b, c. This law allows us to define an for all positive
integer n as the product of n copies of a, without specifying the grouping of the elements. A semigroup
is commutative if it satisfies ab = ba for any pair of elements.

An element z is a left zero if za = z holds for all a, and it is a right zero if az = z holds for a.
There may be infinitely many left zeroes or right zeroes: for example on any set S we may define a
left zero semigroup by the rule ab = a. This rule defines an associative multiplication, since we have
a(bc) = ab = a = ac = (ab)c. Every element of a left zero semigroup is a left zero. An element is
a zero element if it is a left zero and also a right zero. If there is a zero element, then it is unique.
Actually a stronger statement is true: any left zero element is equal to any right zero element. If z`
is a left zero and zr is a right zero then

z` = z`zr = zr.

An element e is a left identity if ea = a holds for all a and it is a right identity if ae = a holds for all
a. There may be infinitely many right identities: for example, every element of a left zero semigroup
is a right identity. That said, if a semigroup has a left identity e` and and also a right identity er ,
then the two are equal:

e` = e`er = er.

An element is an identity element if it is a right identity and also a left identity. The identity element
in a semigroup is unique.

2 Monoids

The definition of a monoid is motivated by the following example. Consider the semigroup on the set
{1, e, f} given by the following multiplication table.

× 1 e f

1 1 e f
e e e f
f f f f
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The identity element of this semigroup is 1. Note that the subset {e, f} is a subsemigroup, the
element e is the multiplicative identity of this subsemigroup, but it is not the identity element of
the larger semigroup. Algebraists found this confusing and, as a workaround, made the following
definition. A monoid is a set with two operations: one is an associative binary operation, and the
other is a distinguished constant 1 which must satisfy 1 ·a = a ·1 = a for every element of the monoid.
We can think of a distinguished constant as a zero variable operation, and the rule 1 · a = a · 1 = a
is just another rule (postulating that the distinguished constant must be the multiplicative identity).
Every submonoid of a monoid must contain its distinguished constant. In the above example, the set
{e, f} is a subsemigroup with respect to multiplication, but it is not a submonoid, if we fix 1 as the
distinguished identity element.

Whether we introduce monoids, or just refer to an (the) identity element of a semigroup, we
can define inverses whenever there is an identity element: b is a right inverse of a if ab = 1 holds
and c is a left inverse of a if ca = 1 holds. There may be infinitely many left inverses and right
inverses. To show this consider the set of all functions f : Z → Z, with respect to composing
functions: f◦g(x) is defined to be f(g(x)). This is a semigroup since composing functions is associative:
f ◦ (g ◦h)(x) = f((g ◦h)(x)) = f(g(h(x)) = f ◦g(h(x)) = (f ◦g)◦h(x) holds for all x ∈ Z. It also has a
(two-sided) identity element: the identity function, given by ι(x) = x for all x satisfies f ◦ ι = ι◦f = f
for all f .

Consider the function f : Z→ Z given by f(x) = 2x. This function is injective (if 2x1 = 2x2 then
x1 = x2) but not surjective (only even integers are in the range). It has infinitely many left inverses:
any function g that sends each even x into x/2 satisfies g ◦ f = ι. (We may freely choose the values
of g(1), g(3), g(5) etc.)

Consider now the function f : Z → Z given by f(x) = bx/2c. This function is surjective: any
x ∈ Z satisfies f(2x) = x, but it is not injective: f(2) = f(3) = 1.

It is easy to show for any set X and the set of functions f : X → X with the composition operation
that a function f has a left inverse if and only if it is injective and it has a right inverse if and only if
it is surjective.

It is true for monoids (or semigroups with an identity element) that whenever an element a has a
right inverse u and a left inverse v then they are equal: if au = 1 and va = 1 then

v = v · 1 = v(au) = (va)u = 1 · u = u.

Hence the two-sided inverse (if it exists) is unique.

3 Groups

A group is a monoid (or semigroup with an identity element) in which every element has an inverse.
A group is commutative if the multiplication is commutative. We often use the additive notation for
commutative groups: we write a+b instead of ab. In this case the additive identity element is denoted
by 0 and the additive inverse of a is −a. When we use the additive notation, we refer to the group as
an Abelian group
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It is easy to show in a group that (a−1)−1 = a holds for all a and that (ab)−1 = b−1a−1 holds for any
pair of elements. As a consequence, for Abelian groups we have −(−a) = a and −(a+b) = (−a)+(−b).

A ring is a set R with two operations: addition and multiplication such that

1. (R,+) is an Abelian group;

2. (R, ·) is a semigroup;

3. the distributive law holds on both sides: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc hold for any
a, b and c.

3


