Semigroups, monoids, groups and rings (Optional reading)

1 Semigroups

A semigroup a set with an associative binary operation (multiplication). The associative law states that $(a b) c=a(b c)$ holds for any three elements a, b, c. This law allows us to define a^{n} for all positive integer n as the product of n copies of a, without specifying the grouping of the elements. A semigroup is commutative if it satisfies $a b=b a$ for any pair of elements.

An element z is a left zero if $z a=z$ holds for all a, and it is a right zero if $a z=z$ holds for a. There may be infinitely many left zeroes or right zeroes: for example on any set S we may define a left zero semigroup by the rule $a b=a$. This rule defines an associative multiplication, since we have $a(b c)=a b=a=a c=(a b) c$. Every element of a left zero semigroup is a left zero. An element is a zero element if it is a left zero and also a right zero. If there is a zero element, then it is unique. Actually a stronger statement is true: any left zero element is equal to any right zero element. If z_{ℓ} is a left zero and z_{r} is a right zero then

$$
z_{\ell}=z_{\ell} z_{r}=z_{r}
$$

An element e is a left identity if $e a=a$ holds for all a and it is a right identity if $a e=a$ holds for all a. There may be infinitely many right identities: for example, every element of a left zero semigroup is a right identity. That said, if a semigroup has a left identity e_{ℓ} and and also a right identity e_{r}, then the two are equal:

$$
e_{\ell}=e_{\ell} e_{r}=e_{r} .
$$

An element is an identity element if it is a right identity and also a left identity. The identity element in a semigroup is unique.

2 Monoids

The definition of a monoid is motivated by the following example. Consider the semigroup on the set $\{1, e, f\}$ given by the following multiplication table.

\times	1	e	f
1	1	e	f
e	e	e	f
f	f	f	f

The identity element of this semigroup is 1 . Note that the subset $\{e, f\}$ is a subsemigroup, the element e is the multiplicative identity of this subsemigroup, but it is not the identity element of the larger semigroup. Algebraists found this confusing and, as a workaround, made the following definition. A monoid is a set with two operations: one is an associative binary operation, and the other is a distinguished constant 1 which must satisfy $1 \cdot a=a \cdot 1=a$ for every element of the monoid. We can think of a distinguished constant as a zero variable operation, and the rule $1 \cdot a=a \cdot 1=a$ is just another rule (postulating that the distinguished constant must be the multiplicative identity). Every submonoid of a monoid must contain its distinguished constant. In the above example, the set $\{e, f\}$ is a subsemigroup with respect to multiplication, but it is not a submonoid, if we fix 1 as the distinguished identity element.

Whether we introduce monoids, or just refer to an (the) identity element of a semigroup, we can define inverses whenever there is an identity element: b is a right inverse of a if $a b=1$ holds and c is a left inverse of a if $c a=1$ holds. There may be infinitely many left inverses and right inverses. To show this consider the set of all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$, with respect to composing functions: $f \circ g(x)$ is defined to be $f(g(x))$. This is a semigroup since composing functions is associative: $f \circ(g \circ h)(x)=f((g \circ h)(x))=f(g(h(x))=f \circ g(h(x))=(f \circ g) \circ h(x)$ holds for all $x \in \mathbb{Z}$. It also has a (two-sided) identity element: the identity function, given by $\iota(x)=x$ for all x satisfies $f \circ \iota=\iota \circ f=f$ for all f.

Consider the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(x)=2 x$. This function is injective (if $2 x_{1}=2 x_{2}$ then $x_{1}=x_{2}$) but not surjective (only even integers are in the range). It has infinitely many left inverses: any function g that sends each even x into $x / 2$ satisfies $g \circ f=\iota$. (We may freely choose the values of $g(1), g(3), g(5)$ etc.)

Consider now the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(x)=\lfloor x / 2\rfloor$. This function is surjective: any $x \in \mathbb{Z}$ satisfies $f(2 x)=x$, but it is not injective: $f(2)=f(3)=1$.

It is easy to show for any set X and the set of functions $f: X \rightarrow X$ with the composition operation that a function f has a left inverse if and only if it is injective and it has a right inverse if and only if it is surjective.

It is true for monoids (or semigroups with an identity element) that whenever an element a has a right inverse u and a left inverse v then they are equal: if $a u=1$ and $v a=1$ then

$$
v=v \cdot 1=v(a u)=(v a) u=1 \cdot u=u
$$

Hence the two-sided inverse (if it exists) is unique.

3 Groups

A group is a monoid (or semigroup with an identity element) in which every element has an inverse. A group is commutative if the multiplication is commutative. We often use the additive notation for commutative groups: we write $a+b$ instead of $a b$. In this case the additive identity element is denoted by 0 and the additive inverse of a is $-a$. When we use the additive notation, we refer to the group as an Abelian group

It is easy to show in a group that $\left(a^{-1}\right)^{-1}=a$ holds for all a and that $(a b)^{-1}=b^{-1} a^{-1}$ holds for any pair of elements. As a consequence, for Abelian groups we have $-(-a)=a$ and $-(a+b)=(-a)+(-b)$.

A ring is a set R with two operations: addition and multiplication such that

1. $(R,+)$ is an Abelian group;
2. (R, \cdot) is a semigroup;
3. the distributive law holds on both sides: $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ hold for any a, b and c.
