Zermelo-Fraenkel axioms

1. Axiom of the empty set:

$$
\exists x \forall y(y \notin x)
$$

There is a set with no elements. (We introduce the symbol \emptyset for it.)
2. Axiom of extensionality:

$$
\forall x \forall y(x=y \Leftrightarrow \forall z(z \in x \Leftrightarrow z \in y)) .
$$

Two sets are the same if and only if they have the same elements.
3. Axiom of the unordered pair:

$$
\forall x \forall y \exists z(x \in z \wedge y \in z \wedge \forall u(u \in z \Rightarrow(u=x \wedge u=y)))
$$

For any set x and y there is a set z containing x and y as elements and nothing else. (Thus $z=\{x, y\}$.)
4. Axiom of the sum set:

$$
\forall x \exists y(\forall z(z \in y \Leftrightarrow \exists u(z \in u \wedge u \in x)))
$$

The union of a set of sets is a set.
5. Axiom of the power set:

$$
\forall x \exists y \forall z(z \in y \Leftrightarrow \forall u(u \in z \Rightarrow u \in x)) .
$$

The family of subsets of a set is a set.
6. Axiom of infinity:

$$
\exists x(\emptyset \in x \wedge \forall y(y \in x \Rightarrow y \cup\{y\} \in x)) .
$$

There is an infinite set.
7. Axiom of subsets (or axiom of comprehension): Let $P(x)$ be a formula with one free (unquantified) variable. Then

$$
\forall u \exists v \forall t(t \in v \Leftrightarrow(t \in u \wedge P(t))) .
$$

Given any set and any proposition $P(x)$, there is a subset of the original set containing precisely those elements x for which $P(x)$ holds.
8. Axiom of replacement: Let $\phi(x, y)$ be a logical formula with two free (unquantified) variables not containing $\forall v$ and $\forall t$. Then

$$
\forall x \exists y \phi(x, y) \Rightarrow \forall z \exists u \forall v(v \in u \Leftrightarrow \exists t(t \in z \wedge \phi(t, v))) .
$$

If Φ is an operation assigning a set to every set then and z is a set then $u=\{\Phi(t): t \in z\}$ is a set.
9. Axiom of foundation (or axiom of regularity):

$$
\forall x(x \neq \emptyset \Rightarrow \exists y(y \in x \wedge \nexists z(z \in y \wedge y \in x)))
$$

Every nonempty set x has an element y that is disjoint from x.
10. Axiom of choice:

$$
\forall x(\emptyset \notin x \Rightarrow \exists y(\forall z(z \in x \Rightarrow \exists!t(t \in y \wedge t \in z)))) .
$$

Given any set of mutually exclusive non-empty sets, there exists at least one set that contains exactly one element in common with each of the non-empty sets.

