Assignment 2

Oral questions

- 1. List all primitive Pythagorean triples (a, b, c) that satisfy b = 20. (Here b is one of the legs.) How many primitive Pythagorean triples satisfy b = 30?
- 2. Given a line ℓ and a point P on it, define the following relation for on the points of $\ell \setminus \{P\}$: $A \sim B$ if P is not between A and B, that is, A * P * B is false. Prove that this relation is an equivalence relation.
- 3. Prove Lemma 3.2 on page 33. (Hint: use Postulate 8.) Use your proof to devise a method to construct Q using compass and ruler.
- 4. Complete the following proof of the theorem stating that the sum of the angles of a triangle ABC is 180° . We draw parallel line to AB through C and use the notation introduced in the picture.

Applying Euclid's fifth postulate to the line AB and the angles $180^{\circ} - \alpha$ and α' yields $180^{\circ} - \alpha + \alpha' \ge 180^{\circ}$. As a consequence we must have $\alpha' \ge \alpha$. Similarly, applying Euclid's fifth postulate to the line BC and the angles $180^{\circ} - \beta$ and β' yields $180^{\circ} - \beta + \beta' \ge 180^{\circ}$, and so $\beta' \ge \beta$. Hence we obtain

$$\alpha + \beta + \gamma \le \alpha' + \beta' + \gamma \le 180^o.$$

Use Euclid's fifth postulate directly in two more situations to show that $\alpha + \beta + \gamma$ is also greater than equal to 180°.

Question to be answered in writing

1. Identify the points in the plane with their Cartesian coordinates. Define the distance of the point $P := (x_1, y_1)$ and $Q := (x_2, y_2)$ by the formula $d(P, Q) := ||x_1 - x_2| + |y_1 - y_2||$. Prove that this function satisfies the axioms given in Definition 3.1 on page 29. Draw a picture of the "unit circle centered at the origin", i.e., the set $\{(x, y) : ||x - 0| + |y - 0|| = 1\}$.