Assignment 2

Oral questions

1. List all primitive Pythagorean triples (a, b, c) that satisfy $b=20$. (Here b is one of the legs.) How many primitive Pythagorean triples satisfy $b=30$?
2. Given a line ℓ and a point P on it, define the following relation for on the points of $\ell \backslash\{P\}: A \sim B$ if P is not between A and B, that is, $A * P * B$ is false. Prove that this relation is an equivalence relation.
3. Prove Lemma 3.2 on page 33. (Hint: use Postulate 8.) Use your proof to devise a method to construct Q using compass and ruler.
4. Complete the following proof of the theorem stating that the sum of the angles of a triangle $A B C$ is 180°. We draw parallel line to $A B$ through C and use the notation introduced in the picture.

Applying Euclid's fifth postulate to the line $A B$ and the angles $180^{\circ}-\alpha$ and α^{\prime} yields $180^{\circ}-\alpha+\alpha^{\prime} \geq 180^{\circ}$. As a consequence we must have $\alpha^{\prime} \geq \alpha$. Similarly, applying Euclid's fifth postulate to the line $B C$ and the angles $180^{\circ}-\beta$ and β^{\prime} yields $180^{\circ}-\beta+\beta^{\prime} \geq 180^{\circ}$, and so $\beta^{\prime} \geq \beta$. Hence we obtain

$$
\alpha+\beta+\gamma \leq \alpha^{\prime}+\beta^{\prime}+\gamma \leq 180^{\circ}
$$

Use Euclid's fifth postulate directly in two more situations to show that $\alpha+\beta+\gamma$ is also greater than equal to 180°.

Question to be answered in writing

1. Identify the points in the plane with their Cartesian coordinates. Define the distance of the point $P:=\left(x_{1}, y_{1}\right)$ and $Q:=\left(x_{2}, y_{2}\right)$ by the formula $d(P, Q):=\left|\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right|$. Prove that this function satisfies the axioms given in Definition 3.1 on page 29. Draw a picture of the "unit circle centered at the origin", i.e., the set $\{(x, y):||x-0|+|y-0||=1\}$.
