Assignment 3

Oral questions

1. Let $A B C_{\triangle}$ be a right triangle with a right angle at C and let C_{1} be the orthogonal projection of C on $A B$. Prove that $\left|C C_{1}\right|$ is the geometric mean of $\left|A C_{1}\right|$ and $\left|C_{1} B\right|$, that is $\left|C C_{1}\right|=\sqrt{\left|A C_{1}\right| \cdot\left|C_{1} B\right|}$. Deduce the inequality between the arithmetic and geometric mean: $\sqrt{a b} \leq \frac{a+b}{2}$ for all $a, b \geq 0$.
2. Provide an example showing that (SSA) does not set up a congruence of triangles. Define a smaller class of triangles for which (SSA) does imply congruence. (Make a restriction on the angles considered, you do not need to formally prove your statement.)
3. In class we have shown the following: If $A_{1} * A_{2} * A_{3}$ and $A_{2} * A_{3} * A_{4}$ then $A_{1} * A_{3} * A_{4}$ and $A_{1} * A_{2} * A_{4}$. Define the line segment $A B$ as the set of all points P satisfying $A * P * B$. Using the cited statement, prove that $A * B * C$ implies that $A B$ is a subset of $A C$.

Questions to be answered in writing

1. Assume that the distance of the points O_{1} and O_{2} is d. Draw a circle of radius r_{1} around O_{1} and a circle of radius r_{2} around O_{2}. Express, in terms of equations and inequalities for r_{1}, r_{2} and d, necessary and sufficient conditions for the two circles to have 0,1 or 2 points in common. (You do not have to prove your claims, but you have to consider all possibilities, including one circle containing the other one.)
2. Explain how Thales' theorem is a special case of the Star Trek Lemma. Prove Thales' theorem. Prove the Star Trek Lemma in the case when the angle $\angle B O C$ is acute and O is on the line segment $A B$.
