Assignment 10

Oral questions

1. Prove that the distance function $d(A, B)=|\log (A B, P Q)|$ of the Poincaré disk model is additive: if $A * C * B$ on a Poincaré line then $d(A C)+d(C B)=d(A B)$. Fix a Poincaré line with ideal points P and Q and a point A on it. Move another point B along the Poincaré line from P to Q. Show that $d(A, B)$ changes from ∞ to 0 and then back to ∞.
2. Let O be the center of the circle of inversion, P^{\prime} the inverse of P and Q^{\prime} the inverse of Q. Assume that O, P, and Q form a triangle. Show that $O P Q_{\triangle}$ is similar to $O Q^{\prime} P_{\triangle}^{\prime}$. Use this result to show that inversion preserves the cross-ratio: if A, B, P, and Q are four points distinct from the center O of the circle of inversion and $A^{\prime}, B^{\prime}, P^{\prime}$, and Q^{\prime} are their inverses then $(A B, P Q)=\left(A^{\prime} B^{\prime}, P^{\prime} Q^{\prime}\right)$.
3. Schweikart's constant is the distance d for which the angle of parallelism is $\Pi(d)=45^{\circ}$. Prove that for the length function of the Poincaré disk model, Schweikart's constant equals $\log (1+\sqrt{2})$. Do not use Lobachevski's Theorem (Theorem 9.4) but the formula given in Theorem 9.1, and the picture below. (Explain why d is the length of the line segment $O P$.)

Question to be answered in writing

1. Identify the points of the Euclidean plane with complex numbers and choose a circle of inversion centered at zero, with radius r. Consider another circle centered at the real number r_{1}, of radius r_{1}. (This circle contains the origin.) Use complex numbers to prove that the inverse of this circle is a vertical line.
