Assignment 12

Oral questions

1. Consider the fractional linear transformation $z \mapsto \frac{a z+b}{c z+d}$ where $a, b, c, d \in \mathbb{R}$ and $a d-b c \neq 0$. Introduce $z=z_{1}+z_{2} i$ and calculate explicitly the imaginary part of $\frac{a z+b}{c z+d}$. Prove that the imaginary part of the image is positive for all $z_{2}>0$ if and only if $a d-b c>0$.
Now show that a conjugate fractional linear map $z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}$ takes the upper half plane into itself if and only if $a d-b c<0$.
2. Assume that the points A, B, C, D are either on the same line or on the same circle, and represent them with the complex numbers a, b, c, d. Prove that the cross ratio $(A B, C D)$ equals $\frac{(a-c)(b-d)}{(c-b)(d-a)}$. (In particular, this expression of complex numbers is real!) Hint: Use the Star Trek Lemma.

Question to be answered in writing

1. Using that

$$
\frac{a z+b}{c z+d}= \begin{cases}\frac{a}{c}+\frac{b-a d / c}{c z+d} & \text { if } c \neq 0, \text { and } \\ \frac{a z+b}{d} & \text { if } c=0\end{cases}
$$

show that every fractional linear transformation arises as a combination of horizontal translations $z \mapsto z+b$, dilations $z \mapsto a z$ and "reflected inversions" $z \mapsto 1 / z$. Conclude that fractional linear transformations preserve angles and the cross-ratio.

