Assignment 13

Oral question

1. Using Theorem 10.10 (with k = 1), prove the formulas (15.1), (15.2), and (15.3) on page 156 of our notes.

Question to be answered in writing

1. Complete the following proof of Theorem 15.1.

Use the Poincaré disc model and assume that the vertex A is at the center of the disk. (The right angle of ABC_{\triangle} is at C.) The lines AB and AC are represented by straight lines, the line BC is represented by an arc of a circle centered at O_1 . Let B' resp. C' be the second intersection of OB resp OC with this circle and B_1 be the orthogonal projection of O to the line OB.

Using that the Euclidean distance OB equals $\tanh(c/2)$ and that $OB \cdot OB' = 1$ (justify why), prove that the Euclidean distance $BB' = 2/\sinh(c)$. Observe that the Euclidean distance CC' is similarly equal to $2/\sinh(b)$. Due to the Star Trek Lemma, the angle $\angle BO_1B_1$ is equal to $\angle B$. (Why?) Hence

$$\sin(B) = \frac{BB_1}{O_1B} = \frac{BB'}{2O_1C} = \frac{BB'}{CC'} = \frac{\sinh(b)}{\sinh(c)}.$$

Finally, using that $\cos(A) = AB_1/AO_1$, where $AB_1 = OB + BB'/2$ and $AO_1 = AC + CC'/2$, prove that

$$\cos(A) = \frac{\tanh(b)}{\tanh(c)}.$$