Assignment 13

Oral question

1. Using Theorem 10.10 (with $k=1$), prove the formulas (15.1), (15.2), and (15.3) on page 156 of our notes.

Question to be answered in writing

1. Complete the following proof of Theorem 15.1.

Use the Poincaré disc model and assume that the vertex A is at the center of the disk. (The right angle of $A B C_{\triangle}$ is at C.) The lines $A B$ and $A C$ are represented by straight lines, the line $B C$ is represented by an arc of a circle centered at O_{1}. Let B^{\prime} resp. C^{\prime} be the second intersection of $O B$ resp $O C$ with this circle and B_{1} be the orthogonal projection of O to the line $O B$.

Using that the Euclidean distance $O B$ equals $\tanh (c / 2)$ and that $O B \cdot O B^{\prime}=1$ (justify why), prove that the Euclidean distance $B B^{\prime}=2 / \sinh (c)$. Observe that the Euclidean distance $C C^{\prime}$ is similarly equal to $2 / \sinh (b)$. Due to the Star Trek Lemma, the angle $\angle B O_{1} B_{1}$ is equal to $\angle B$. (Why?) Hence

$$
\sin (B)=\frac{B B_{1}}{O_{1} B}=\frac{B B^{\prime}}{2 O_{1} C}=\frac{B B^{\prime}}{C C^{\prime}}=\frac{\sinh (b)}{\sinh (c)}
$$

Finally, using that $\cos (A)=A B_{1} / A O_{1}$, where $A B_{1}=O B+B B^{\prime} / 2$ and $A O_{1}=A C+C C^{\prime} / 2$, prove that

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)}
$$

