Inversion in the complex plane

Given a circle C centered at O with radius r the inversion with base circle A sends P into P^{\prime} where O, P and P^{\prime} are on the same line, P^{\prime} is between O and P and $O P \cdot O P^{\prime}=r^{2}$.

Lemma 1 If the base circle is centered at the origin and has radius r, then the inversion sends $z \neq 0$ into r^{2} / \bar{z}, where \bar{z} is the conjugate of z.

Proof: Let ϕ be the angle between the horizontal ray of positive real numbers and z. Then $z=$ $|z| \cdot(\cos (\phi)+i \cdot \sin (\phi))$ and the inverse of z is $r^{2} /|z| \cdot(\cos (\phi)+i \cdot \sin (\phi))$. Since

$$
r^{2} / z=r^{2} /|z| \cdot(\cos (-\phi)+i \cdot \sin (-\phi))=r^{2} /|z| \cdot(\cos (\phi)-i \cdot \sin (\phi))
$$

the conjugate of r^{2} / z is the inverse of z.

Theorem 1 Consider an inversion with base circle centered at O of radius r. Let C_{1} be a circle centered at O_{1} of radius r_{1}. If $r_{1} \neq\left|O O_{1}\right|$ then the inverse image of C_{1} is a circle. This circle may be obtained from C_{1} by a dilation centered at O by the factor of $\frac{r^{2}}{\left|O O_{1}\right|^{2}-r_{1}^{2}}$.

Proof: Without loss of generality we may assume that O is the origin. If we rotate the P around O by any fixed angle, its inverse gets rotated by the same angle. Hence we may assume that the ray $\overrightarrow{O O_{1}}$ is horizontal, pointing towards ∞. The center O_{1} is then represented by the real number c_{1} where $c_{1}=\left|O O_{1}\right|$. The equation of the circle centered at O_{1}, of radius r_{1} is

$$
\begin{equation*}
\left(z-c_{1}\right)\left(\bar{z}-c_{1}\right)=r_{1}^{2} . \tag{1}
\end{equation*}
$$

This may be rewritten as

$$
z \bar{z}-c_{1}(z+\bar{z})+\left(c_{1}^{2}-r_{1}^{2}\right)=0
$$

Multiplying both sides by $\frac{r^{2}}{z \overline{\bar{z}}}$ yields

$$
r^{2}-c_{1}\left(\frac{r^{2}}{z}+\frac{r^{2}}{\bar{z}}\right)+\left(c_{1}^{2}-r_{1}^{2}\right) \frac{r^{2}}{z \bar{z}}=0,
$$

which may be rewritten as

$$
r^{2}-c_{1}\left(\frac{\overline{r^{2}}}{\bar{z}}+\frac{r^{2}}{\bar{z}}\right)+\frac{c_{1}^{2}-r_{1}^{2}}{r^{2}} \cdot \frac{r^{2}}{\bar{z}} \cdot \frac{\overline{r^{2}}}{\bar{z}}=0 .
$$

Since, by Lemma 1 , the inverse of z is r^{2} / \bar{z}, the inverse of the circle C_{1} is the set of points satisfying the equation

$$
r^{2}-c_{1}(z+\bar{z})+\frac{c_{1}^{2}-r_{1}^{2}}{r^{2}} z \bar{z}=0
$$

Since we assume $c_{1} \neq r_{1}$, we may multiply both sides by $\frac{r^{2}}{c_{1}^{2}-r_{1}^{2}}$ and get

$$
\frac{r^{4}}{c_{1}^{2}-r_{1}^{2}}-\frac{r^{2} c_{1}}{c_{1}^{2}-r_{1}^{2}}(z+\bar{z})+z \bar{z}=0
$$

or, equivalently

$$
z \bar{z}-\frac{r^{2} c_{1}}{c_{1}^{2}-r_{1}^{2}}(z+\bar{z})=\frac{r^{4}}{r_{1}^{2}-c_{1}^{2}}
$$

Adding $\frac{r^{4} c_{1}^{2}}{\left(c_{1}^{2}-r_{1}^{2}\right)^{2}}$ to both sides yields

$$
\left(z-\frac{r^{2} c_{1}}{c_{1}^{2}-r_{1}^{2}}\right)\left(\bar{z}-\frac{r^{2} c_{1}}{c_{1}^{2}-r_{1}^{2}}\right)=\frac{r^{4}\left(r_{1}^{2}-c_{1}^{2}\right)}{\left(r_{1}^{2}-c_{1}^{2}\right)^{2}}+\frac{r^{4} c_{1}^{2}}{\left(c_{1}^{2}-r_{1}^{2}\right)^{2}} .
$$

After simplifying on the right hand side we obtain

$$
\left(z-\frac{r^{2} c_{1}}{c_{1}^{2}-r_{1}^{2}}\right)\left(\bar{z}-\frac{r^{2} c_{1}}{c_{1}^{2}-r_{1}^{2}}\right)=\frac{r^{4} r_{1}^{2}}{\left(r_{1}^{2}-c_{1}^{2}\right)^{2}},
$$

the equation of the circle centered at $\frac{r^{2}}{c_{1}^{2}-r_{1}^{2}} \cdot c_{1}$, of radius $\frac{r^{2}}{\left|r_{1}^{2}-c_{1}^{2}\right|} \cdot r_{1}$.

Theorem 2 Consider an inversion with base circle centered at O of radius r. Let C_{1} be a circle centered at O_{1} of radius r_{1}. If $r_{1}=\left|O O_{1}\right|$ then the inverse image of C_{1} is a line. This line is orthogonal to $O O_{1}$, and its distance from O is $\frac{r^{2}}{2 r_{1}}$. (Conversely, the inverse image of any line is a circle containing the center of the base circle.)

Proof: Just like in the previous theorem, we start by observing that we may assume that the center O_{1} is a positive real number c_{1}. Since C_{1} contains O, now we have $c_{1}=r_{1}$, and equation (1) may be simplified to

$$
z \bar{z}-r_{1}(z+\bar{z})=0 .
$$

Multiplying both sides by $\frac{r^{2}}{z \bar{z}}$ yields

$$
r^{2}-r_{1}\left(\frac{r^{2}}{z}+\frac{r^{2}}{\bar{z}}\right)=0,
$$

which may be rewritten as

$$
r^{2}-r_{1}\left(\frac{\overline{r^{2}}}{\bar{z}}+\frac{r^{2}}{\bar{z}}\right)=0 .
$$

Using again Lemma 1 , the inverse of the circle C_{1} is the set of points satisfying the equation

$$
r^{2}-r_{1}(z+\bar{z})=0
$$

which may be rewritten as

$$
\frac{z+\bar{z}}{2}=\frac{r^{2}}{2 r_{1}} .
$$

Since $\frac{z+\bar{z}}{2}$ is the real part of z, we obtained the equation of a vertical line at distance $\frac{r^{2}}{2 r_{1}}$ from O.

