Assignment 8

Oral questions

1. Which of the following must always exist even in hyperbolic geometry: the incircle or the circumcircle? (Think of the crossbar theorem and of the possibility of hyperparallel lines being perpendicular bisectors.)
2. Use the additivity of defect to show that all triangles can not have the same positive defect. Is there an upper bound on the defect of a triangle? Compare this to the upper bound on the defect of a quadrilateral.
3. (Euclidean geometry.) Let O be the center of the circle of inversion, P^{\prime} the inverse of P and Q^{\prime} the inverse of Q. Assume that O, P, and Q form a triangle. Show that $O P Q_{\triangle}$ is similar to $O Q^{\prime} P_{\triangle}^{\prime}$. Use this result to show that inversion preserves the cross-ratio: if A, B, P, and Q are four points distinct from the center O of the circle of inversion and $A^{\prime}, B^{\prime}, P^{\prime}$, and Q^{\prime} are their inverses then $(A B, P Q)=\left(A^{\prime} B^{\prime}, P^{\prime} Q^{\prime}\right)$.

Questions to be answered in writing

1. Let ℓ be the perpendicular bisector of the side $A B$ in the triangle $\triangle A B C$. Let A_{1} be the midpoint of the side $B C$. Let m be the line through A_{1} that is perpendicular to ℓ. Show that m contains the midpoint of $A C$. (Hint: let B_{1} be the intersection of the line m with $A C$. Reflect B_{1} about the line ℓ, get B_{1}^{\prime}, and reflect B_{1}^{\prime} about the point A_{1} to get $B_{1}^{\prime \prime}$. Show that the length of $A B_{1}$ is the same as the length of $C B_{1}^{\prime \prime}$ and then show that $\triangle B_{1} C B_{1}^{\prime \prime}$ is isoceles.) This is a question about neutral geometry. You should not assume Euclid's fifth postulate in your proof.
