Assignment 9

Oral questions

1. Prove that the distance function $d(A, B)=|\log (A B, P Q)|$ of the Poincaré disk model is additive: if $A * C * B$ on a Poincaré line then $d(A C)+d(C B)=d(A B)$. Fix a Poincaré line with ideal points P and Q and a point A on it. Move another point B along the Poincaré line from P to Q. Show that $d(A, B)$ changes from ∞ to 0 and then back to ∞.
2. Schweikart's constant is the distance d for which the angle of parallelism is $\Pi(d)=45^{\circ}$. Prove that for the length function of the Poincaré disk model, Schweikart's constant equals $\log (1+\sqrt{2})$. Do not use Lobachevski's Theorem (Theorem 11.4) but the formula given in Theorem 11.1, and the picture below. (Explain why d is the length of the line segment $O P$.)

Question to be answered in writing

1. Prove that inversion preserves the angle of two circles, using the statements on our handout, in the special case when the center of the base circle and the centers of the two other circles are collinear. Assume the center of the base circle is 0 and its radius is 1 . Assume the two circles to be inverted have their centers O_{1} and O_{2} on the real line, at c_{1} and c_{2} respectively, and that they have radius r_{1} and r_{2} respectively. Assume the point P is an intersection of these circles. Using the law of cosines, express the cosine of $\angle O_{1} P O_{2}$ in terms of $c_{1}, c_{2}, r_{1}, r_{2}$. Let $O_{1}^{\prime}, O_{2}^{\prime}$ and P^{\prime} the image of O_{1}, O_{2} and P under the inversion. Using the formulas on our handout, show that $\angle O_{1}^{\prime} P^{\prime} O_{2}^{\prime}$ has the same cosine.
