Assignment 10

Oral questions

1. Prove that inversion preserves the angle of two circles or lines, in the special case when you have two lines that intersect in a point that is different from the center of the base circle. (Recall that the inverses of these lines are circles that contain the center of the base circle.)
2. A hyperbolic circle centered at C of radius r is the set of all points A satisfying $d(A, C)=r$. Prove that a hyperbolic circle corresponds to a circle in the Poincaré disk model, although its center may not be equal to its Euclidean center. (Hint: prove the statement in the case when $C=P$ first, where P is the center of the Poincaré disk. Use then the fact that reflection about the perpendicular bisector of $P C$ takes a hyperbolic circle centered at P into a hyperbolic circle centered at C, and that this reflection corresponds to an inversion about a circle.)

Question to be answered in writing

1. Complete the following proof of the hyperbolic Pythagorean theorem (Theorem 16.1) which states the following: Any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies $\cos (A)=\tanh (b) / \tanh (c)$.

Use the Poincaré disc model and assume that the vertex A is at the center of the disk. (The right angle of $A B C_{\triangle}$ is at C.) The lines $A B$ and $A C$ are represented by straight lines, the line $B C$ is represented by an arc of a circle centered at O_{1}. Let B^{\prime} resp. C^{\prime} be the second intersection of $O B$ resp $O C$ with this circle and B_{1} be the orthogonal projection of O to the line $O B$.
Using that the Euclidean distance $O B$ equals $\tanh (c / 2)$ and that $O B \cdot O B^{\prime}=1$ (justify why), prove that the Euclidean distance $B B^{\prime}=2 / \sinh (c)$. Observe that the Euclidean distance $C C^{\prime}$ is similarly equal to $2 / \sinh (b)$. Due to the Star Trek Lemma, the angle $\angle B O_{1} B_{1}$ is equal to $\angle B$. (Why?) Hence

$$
\sin (B)=\frac{B B_{1}}{O_{1} B}=\frac{B B^{\prime}}{2 O_{1} C}=\frac{B B^{\prime}}{C C^{\prime}}=\frac{\sinh (b)}{\sinh (c)} .
$$

Finally, using that $\cos (A)=A B_{1} / A O_{1}$, where $A B_{1}=O B+B B^{\prime} / 2$ and $A O_{1}=A C+C C^{\prime} / 2$, prove that

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)}
$$

