The crossbar theorem

corrected proof of Theorem 7.10 in [1]

Proposition 1 Assume D is in the interior of the angle $\angle B A C$. Then
(i) every point of the ray $\overrightarrow{A D}$: except for A is also in the interior of the the angle $\angle B A C$;
(ii) no point of the ray opposite to $\overrightarrow{A D}$: is in the interior;
(iii) If $B * A * E$ then C is in the interior of $\angle D A E$.

Theorem 1 (Crossbar theorem) Given $\triangle A B C$, let D be a point in the interior of $\angle B A C$. Then there is a point G so that G lies on both $\overrightarrow{A D}:$ and $B C$

Proof: (Use illustration from [1, Theorem 7.10].) Let $\overrightarrow{A F}$: be the opposite ray to $\overrightarrow{A D}:$. If $\overrightarrow{A F}: \cap B C=$ $\{P\}$, then $B * P * C$ and, by [1, Theorem 7.7], we have that P lies in the interior of $\angle B A C$. However, this contradicts part (ii) of Proposition 1 above. Thus, we have that $\overrightarrow{A F}: \cap B C=\emptyset$. Now, this means that $\overleftrightarrow{A D} \cap B C=\emptyset$ since neither $\overrightarrow{A D}$: nor its opposite ray intersect $B C$. It follows that B and C are on the same side of $\overleftrightarrow{A D}$.

Let E be a point on the line $\overleftrightarrow{A B}$ such that $B * A * E$. Then, by part (iii) of Proposition 1 above C is in the interior of $\angle D A E$. As a consequence, E and C are on the same side of $\overleftrightarrow{A D}$. Therefore E, B and C are all on the same side of $\overleftrightarrow{A D}$, in contradiction with $B * A * E$.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.

