The crossbar theorem corrected proof of Theorem 7.10 in [1]

Proposition 1 Assume D is in the interior of the angle $\angle BAC$. Then

- (i) every point of the ray \overrightarrow{AD} : except for A is also in the interior of the the angle $\angle BAC$;
- (ii) no point of the ray opposite to \overrightarrow{AD} : is in the interior;
- (iii) If B * A * E then C is in the interior of $\angle DAE$.

Theorem 1 (Crossbar theorem) Given $\triangle ABC$, let D be a point in the interior of $\angle BAC$. Then there is a point G so that G lies on both \overrightarrow{AD} : and BC

Proof: (Use illustration from [1, Theorem 7.10].) Let \overrightarrow{AF} : be the opposite ray to \overrightarrow{AD} :. If \overrightarrow{AF} : $\cap BC = \{P\}$, then B * P * C and, by [1, Theorem 7.7], we have that P lies in the interior of $\angle BAC$. However, this contradicts part (ii) of Proposition 1 above. Thus, we have that $\overrightarrow{AF} : \cap BC = \emptyset$. Now, this means that $\overrightarrow{AD} \cap BC = \emptyset$ since neither \overrightarrow{AD} : nor its opposite ray intersect BC. It follows that B and C are on the same side of \overrightarrow{AD} .

Let *E* be a point on the line \overrightarrow{AB} such that B * A * E. Then, by part (iii) of Proposition 1 above *C* is in the interior of $\angle DAE$. As a consequence, *E* and *C* are on the same side of \overrightarrow{AD} . Therefore *E*, *B* and *C* are all on the same side of \overrightarrow{AD} , in contradiction with B * A * E.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.