The hyperbolic Pythagorean theorem

The hyperbolic Pythagorean theorem is the following statement.

Proposition 1 Any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies $\cosh (c)=\cosh (a) \cosh (b)$.

Proof: See [1, page 181].

To prove the rest of the formulas of hyperbolic trigonometry, we need to show the following.

Proposition 2 Any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies $\cos (A)=\tanh (b) / \tanh (c)$.

Proof: It is your homework to fill in the details in the following proof.

Use the Poincare disc model and assume that the vertex A is at the center of the disk. (The right angle of $A B C_{\Delta}$ is at C.) The lines $A B$ and $A C$ are represented by straight lines, the line $B C$ is represented by an arc of a circle centered at O_{1}. Let B^{\prime} resp. C^{\prime} be the second intersection of $O B$ resp $O C$ with this circle and B_{1} be the orthogonal projection of O to the line $O B$.

Using that the Euclidean distance $O B$ equals $\tanh (c / 2)$ and that $O B \cdot O B^{\prime}=1$ (justify why), prove that the Euclidean distance $B B^{\prime}=2 / \sinh (c)$. Observe that the Euclidean distance $C C^{\prime}$ is similarly equal to $2 / \sinh (b)$. Due to the Star Trek Lemma, the angle $\angle B O_{1} B_{1}$ is equal to $\angle B$. (Why?) Hence

$$
\sin (B)=\frac{B B_{1}}{O_{1} B}=\frac{B B^{\prime}}{2 O_{1} C}=\frac{B B^{\prime}}{C C^{\prime}}=\frac{\sinh (b)}{\sinh (c)} .
$$

Finally, using that $\cos (A)=A B_{1} / A O_{1}$, where $A B_{1}=O B+B B^{\prime} / 2$ and $A O_{1}=A C+C C^{\prime} / 2$, prove that

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)}
$$

Proposition 3 The previous two statements also imply the following equalities:

$$
\begin{gather*}
\sin (A)=\frac{\sinh (a)}{\sinh (c)} \tag{1}\\
\frac{\cos (A)}{\sin (B)}=\cosh (a) \quad \text { and } \tag{2}\\
\cot (A) \cot (B)=\cosh (a) \cosh (b) \tag{3}
\end{gather*}
$$

Proof: Before proving equation (1), note that this equation was actually shown during the proof of Proposition 2 (for B whose role is exchangeable with the role of A). That said, here we show that it follows algebraically from the previous two propositions. By Proposition 2 we have

$$
\sin ^{2}(A)=1-\cos ^{2}(A)=\frac{\tanh ^{2}(b)-\tanh ^{2}(c)}{\tanh ^{2}(c)}
$$

Using the fact that $\tanh (x)=\sinh (x) / \cosh (x)$, the above equation may be rewritten as

$$
\sin ^{2}(A)=\frac{\sinh ^{2}(c) \cosh ^{2}(b)-\cosh ^{2}(c) \sinh ^{2}(b)}{\sinh ^{2}(c) \cosh ^{2}(b)}
$$

Replacing each $\sinh ^{2}(x)$ with $\cosh ^{2}(x)-1$ in the numerator we get

$$
\sin ^{2}(A)=\frac{\left(\cosh ^{2}(c)-1\right) \cosh ^{2}(b)-\cosh ^{2}(c)\left(\cosh ^{2}(b)-1\right)}{\sinh ^{2}(c) \cosh ^{2}(b)}=\frac{\cosh ^{2}(c)-\cosh ^{2}(b)}{\sinh ^{2}(c) \cosh ^{2}(b)}
$$

By Proposition 1 we may replace $\cosh ^{2}(c)$ with $\cosh ^{2}(a) \cosh ^{2}(b)$ and get

$$
\sin ^{2}(A)=\frac{\cosh ^{2}(a) \cosh ^{2}(b)-\cosh ^{2}(b)}{\sinh ^{2}(c) \cosh ^{2}(b)}=\frac{\cosh ^{2}(a)-1}{\sinh ^{2}(c)}=\frac{\sinh ^{2}(a)}{\sinh ^{2}(c)}
$$

Since A is an acute angle, $\sin (A)$ is positive and we may take the square root on both sides to obtain equation (1). Combining equation (1) with Proposition 2 yields

$$
\frac{\cos (A)}{\sin (B)}=\frac{\tanh (b)}{\tanh (c)} \cdot \frac{\sinh (c)}{\sinh (b)}=\frac{\cosh (c)}{\cosh (b)}
$$

By Proposition 1 we may replace $\cosh (c)$ with $\cosh (a) \cosh (b)$ and get

$$
\frac{\cos (A)}{\sin (B)}=\frac{\cosh (a) \cosh (b)}{\cosh (b)}
$$

Equation (2) follows after simplifying by $\cosh (b)$. Finally, using equation (2) for $\cos (A) / \sin (B)$ and for $\cos (B) / \sin (A)$ yields

$$
\cot (A) \cot (B)=\frac{\cos (A)}{\sin (B)} \cdot \frac{\cos (B)}{\sin (A)}=\cosh (a) \cosh (b)
$$

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.

