
The spherical Pythagorean theorem

Proposition 1 On a sphere of radius R, any right triangle 4ABC with ∠C being the right angle
satisfies cos(c/R) = cos(a/R) cos(b/R).

Proof: We complement the proof presented in [1, page 206]. Let O be the center of the sphere, we may

assume its coordinates are (0, 0, 0). We may rotate the sphere so that A has coordinates
−→
OA = (R, 0, 0)

and C lies in the xy-plane. Rotating around the z axis by β := ∠AOC takes A into C. The edge OA

moves in the xy-plane, by β, thus the coordinates of C are
−−→
OC = (R cos(β), R sin(β), 0). Since we

have a right angle at C, the plane of 4OBC is perpendicular to the plane of 4OAC and it contains

the z axis. An orthonormal basis of the plane of 4OBC is given by 1/R ·
−−→
OC = (cos(β), sin(β), 0)

and the vector
−→
OZ := (0, 0, 1). A rotation around O in this plane by α := ∠BOC takes C into B:

−−→
OB = cos(α) ·

−−→
OC + sin(α) ·R ·

−→
OZ = (R cos(β) cos(α), R sin(β) cos(α), sin(α)).

Introducing γ := ∠AOB, we have

cos(γ) =

−→
OA ·

−−→
OB

R2
=
R2 cos(α) cos(β)

R2
.

The statement now follows from α = a/R, β = b/R and γ = c/R. ♦

To prove the rest of the formulas of spherical trigonometry, we need to show the following.

Proposition 2 Any spherical right triangle 4ABC with ∠C being the right angle satisfies

sin(A) =
sin
(
a
R

)
sin
(
c
R

) and (1)

cos(A) =
tan

(
b
R

)
tan

(
c
R

) . (2)

Proof: We complement the proof presented in [1, page 208]. After replacing a/R, b/R and c/R with

a, b, and c we may assume R = 1. This time we rotate the triangle in such a way that
−−→
OC = (0, 0, 1),

A is in the xz plane and B is in the yz-plane. A rotation around O in the xz plane by b = ∠AOC
takes C into A, thus we have −→

OA = (sin(b), 0, cos(b)).

Similarly, a rotation around O in the yz-plane by a = ∠BOC takes C into B, thus we have

−−→
OB = (0, sin(a), cos(a)).

The angle A is between
−→
OA×

−−→
OB and

−→
OA×

−−→
OC. Here

−→
OA×

−−→
OB = (− cos(b) sin(a),− sin(b) cos(a), sin(a) sin(b)) and

−→
OA×

−−→
OC = (0,− sin(b), 0).
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The length of
−→
OA×

−−→
OB is

∣∣∣−→OA∣∣∣ · ∣∣∣−−→OB∣∣∣ · sin(c) = sin(c), the length of
−→
OA×

−−→
OC is sin(b).

To prove (1) we use the fact that∣∣∣(−→OA×−−→OB)× (
−→
OA×

−−→
OC)

∣∣∣ = ∣∣∣−→OA×−−→OB∣∣∣ · ∣∣∣−→OA×−−→OC∣∣∣ · sin(A). (3)

Since

(− cos(b) sin(a),− sin(b) cos(a), sin(a) sin(b))× (0,− sin(b), 0) = (sin(a) sin2(b), 0, sin(b) cos(b) sin(a))

the left hand side of (3) is√
sin2(a) sin4(b) + sin2(b) cos2(b) sin2(a) = sin(b) sin(a)

√
sin2(b) + cos2(b) = sin(b) sin(a).

The right hand side of (3) is is sin(b) sin(c) sin(A). Thus we have

sin(b) sin(a) = sin(b) sin(c) sin(A),

yielding (1).

To prove (2) we use the fact that

(
−→
OA×

−−→
OB) · (

−→
OA×

−−→
OC) =

∣∣∣−→OA×−−→OB∣∣∣ · ∣∣∣−→OA×−−→OC∣∣∣ · cos(A). (4)

The left hand side is sin2(b) cos(a), the right hand side is sin(b) sin(c) cos(A). Thus we obtain

sin2(b) cos(a) = sin(b) sin(c) cos(A),

yielding

cos(A) =
sin(b) cos(a)

sin(c)
=

tan(b)

tan(c)
· cos(a) cos(b)

cos(c)
.

Equation (2) now follows from Proposition 1. ♦
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