The spherical Pythagorean theorem

Proposition 1 On a sphere of radius R, any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies $\cos (c / R)=\cos (a / R) \cos (b / R)$.

Proof: We complement the proof presented in [1, page 206]. Let O be the center of the sphere, we may assume its coordinates are $(0,0,0)$. We may rotate the sphere so that A has coordinates $\overrightarrow{O A}=(R, 0,0)$ and C lies in the $x y$-plane. Rotating around the z axis by $\beta:=\angle A O C$ takes A into C. The edge $O A$ moves in the $x y$-plane, by β, thus the coordinates of C are $\overrightarrow{O C}=(R \cos (\beta), R \sin (\beta), 0)$. Since we have a right angle at C, the plane of $\triangle O B C$ is perpendicular to the plane of $\triangle O A C$ and it contains the z axis. An orthonormal basis of the plane of $\triangle O B C$ is given by $1 / R \cdot \overrightarrow{O C}=(\cos (\beta), \sin (\beta), 0)$ and the vector $\overrightarrow{O Z}:=(0,0,1)$. A rotation around O in this plane by $\alpha:=\angle B O C$ takes C into B :

$$
\overrightarrow{O B}=\cos (\alpha) \cdot \overrightarrow{O C}+\sin (\alpha) \cdot R \cdot \overrightarrow{O Z}=(R \cos (\beta) \cos (\alpha), R \sin (\beta) \cos (\alpha), \sin (\alpha))
$$

Introducing $\gamma:=\angle A O B$, we have

$$
\cos (\gamma)=\frac{\overrightarrow{O A} \cdot \overrightarrow{O B}}{R^{2}}=\frac{R^{2} \cos (\alpha) \cos (\beta)}{R^{2}}
$$

The statement now follows from $\alpha=a / R, \beta=b / R$ and $\gamma=c / R$.

To prove the rest of the formulas of spherical trigonometry, we need to show the following.

Proposition 2 Any spherical right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies

$$
\begin{gather*}
\sin (A)=\frac{\sin \left(\frac{a}{R}\right)}{\sin \left(\frac{c}{R}\right)} \text { and } \tag{1}\\
\cos (A)=\frac{\tan \left(\frac{b}{R}\right)}{\tan \left(\frac{c}{R}\right)} . \tag{2}
\end{gather*}
$$

Proof: We complement the proof presented in [1, page 208]. After replacing $a / R, b / R$ and c / R with a, b, and c we may assume $R=1$. This time we rotate the triangle in such a way that $\overrightarrow{O C}=(0,0,1)$, A is in the $x z$ plane and B is in the $y z$-plane. A rotation around O in the $x z$ plane by $b=\angle A O C$ takes C into A, thus we have

$$
\overrightarrow{O A}=(\sin (b), 0, \cos (b)) .
$$

Similarly, a rotation around O in the $y z$-plane by $a=\angle B O C$ takes C into B, thus we have

$$
\overrightarrow{O B}=(0, \sin (a), \cos (a))
$$

The angle A is between $\overrightarrow{O A} \times \overrightarrow{O B}$ and $\overrightarrow{O A} \times \overrightarrow{O C}$. Here

$$
\overrightarrow{O A} \times \overrightarrow{O B}=(-\cos (b) \sin (a),-\sin (b) \cos (a), \sin (a) \sin (b)) \quad \text { and } \quad \overrightarrow{O A} \times \overrightarrow{O C}=(0,-\sin (b), 0)
$$

The length of $\overrightarrow{O A} \times \overrightarrow{O B}$ is $|\overrightarrow{O A}| \cdot|\overrightarrow{O B}| \cdot \sin (c)=\sin (c)$, the length of $\overrightarrow{O A} \times \overrightarrow{O C}$ is $\sin (b)$.
To prove (1) we use the fact that

$$
\begin{equation*}
|(\overrightarrow{O A} \times \overrightarrow{O B}) \times(\overrightarrow{O A} \times \overrightarrow{O C})|=|\overrightarrow{O A} \times \overrightarrow{O B}| \cdot|\overrightarrow{O A} \times \overrightarrow{O C}| \cdot \sin (A) \tag{3}
\end{equation*}
$$

Since

$$
(-\cos (b) \sin (a),-\sin (b) \cos (a), \sin (a) \sin (b)) \times(0,-\sin (b), 0)=\left(\sin (a) \sin ^{2}(b), 0, \sin (b) \cos (b) \sin (a)\right)
$$

the left hand side of (3) is

$$
\sqrt{\sin ^{2}(a) \sin ^{4}(b)+\sin ^{2}(b) \cos ^{2}(b) \sin ^{2}(a)}=\sin (b) \sin (a) \sqrt{\sin ^{2}(b)+\cos ^{2}(b)}=\sin (b) \sin (a) .
$$

The right hand side of (3) is is $\sin (b) \sin (c) \sin (A)$. Thus we have

$$
\sin (b) \sin (a)=\sin (b) \sin (c) \sin (A),
$$

yielding (1).
To prove (2) we use the fact that

$$
\begin{equation*}
(\overrightarrow{O A} \times \overrightarrow{O B}) \cdot(\overrightarrow{O A} \times \overrightarrow{O C})=|\overrightarrow{O A} \times \overrightarrow{O B}| \cdot|\overrightarrow{O A} \times \overrightarrow{O C}| \cdot \cos (A) \tag{4}
\end{equation*}
$$

The left hand side is $\sin ^{2}(b) \cos (a)$, the right hand side is $\sin (b) \sin (c) \cos (A)$. Thus we obtain

$$
\sin ^{2}(b) \cos (a)=\sin (b) \sin (c) \cos (A)
$$

yielding

$$
\cos (A)=\frac{\sin (b) \cos (a)}{\sin (c)}=\frac{\tan (b)}{\tan (c)} \cdot \frac{\cos (a) \cos (b)}{\cos (c)} .
$$

Equation (2) now follows from Proposition 1.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.

