Assignment 2

Oral questions

1. 2.4/12

2. Complete the following proof of the theorem stating that the sum of the angles of a triangle ABC is 180° . We draw parallel line to AB through C and use the notation introduced in the picture.

Applying Euclid's fifth postulate to the line AC and the angles $180^{\circ} - \alpha$ and α' yields $180^{\circ} - \alpha + \alpha' \ge 180^{\circ}$. As a consequence we must have $\alpha' \ge \alpha$. Similarly, applying Euclid's fifth postulate to the line BC and the angles $180^{\circ} - \beta$ and β' yields $180^{\circ} - \beta + \beta' \ge 180^{\circ}$, and so $\beta' \ge \beta$. Hence we obtain

$$\alpha + \beta + \gamma \le \alpha' + \beta' + \gamma \le 180^o.$$

Use Euclid's fifth postulate directly in two more situations to show that $\alpha + \beta + \gamma$ is also greater than equal to 180°.

Questions to be answered in writing

- 1. 2.2/4
- 2. 2.3/6
- 3. 2.3/9
- 4. Assume that the distance of the points O_1 and O_2 is d. Draw a circle of radius r_1 around O_1 and a circle of radius r_2 around O_2 . Express, in terms of equations and inequalities for r_1 , r_2 and d, necessary and sufficient conditions for the two circles to have 0, 1 or 2 points in common. (You do not have to prove your claims, but you have to consider all possibilities, including one circle containing the other one.)