Assignment 8

Oral questions

1. $4.7 / 13$ (Nagle point)
2. For a triangle $\triangle A B C$ let A^{\prime}, B^{\prime}, and C^{\prime}, respectively, be the points where the incircle is tangent to the sides $B C$, $A C$, and $A B$, respectively. Prove that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent. (The common intersection is the Gergonne point.)

Questions to be answered in writing

1. Use Ceva's theorem to prove that the orthocenter exists.
2. Prove Napoleon's theorem: Given an arbitrary triangle $A B C_{\triangle}$, the centers of the equilateral triangles exterior to $A B C_{\triangle}$ form an equilateral triangle. (Illustration and hints on next page.)

Hints: Represent the points $A, B, C, A_{1}, B_{1}, C_{1}$ with complex numbers $a, b, c, a_{1}, b_{1}, c_{1}$. Observe that multiplying with

$$
\rho:=\frac{1}{\sqrt{3}}\left(\cos \left(30^{\circ}\right)+i \cdot \sin \left(30^{\circ}\right)\right)
$$

rotates the vector $\overrightarrow{B A}=a-b$ into $\overrightarrow{B C_{1}}=c_{1}-b$. Use this observation to express c_{1} in terms of a, b and ρ. Express then a_{1} and c_{1} similarly in terms of a, b, c and ρ. Show that $c_{1}-a_{1}$ is obtained by multiplying $b_{1}-a_{1}$ with

$$
\frac{\rho}{1-\rho}=\frac{2 \rho-1}{\rho}=\frac{\rho-1}{2 \rho-1} .
$$

It is probably easier to do so if you find the quadratic equation whose roots are ρ and its conjugate. Finally show that

$$
\frac{\rho}{1-\rho}=\cos \left(60^{\circ}\right)+i \cdot \sin \left(60^{\circ}\right)
$$

meaning that $\overrightarrow{A_{1} C_{1}}$ is obtained from $\overrightarrow{A_{1} B_{1}}$ by a 60° rotation.

