Assignment 12

Oral questions

1. Assume $a, b, c \in \mathbb{R}$ satisfy $a^{2}+b c=1$, and let $T: \mathbb{C} \rightarrow \mathbb{C}$ be given by

$$
T(z)=\frac{a \bar{z}+b}{c \bar{z}-a}
$$

Show that $T(T(z))=z$ for all z. (All reflections of the Poincaré upper half plane model are represented by such a function.)
2. All hyperbolic rotations fixing the point i in the Poincaré upper half plane model are fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ sending i into i. Using this fact, and assuming that we have scaled our coefficients to satisfy $a d-b c=1$, show that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

for some angle θ.

Question to be answered in writing

1. Complete the following proof of the hyperbolic Pythagorean theorem which states the following:

Any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies $\cos (A)=\tanh (b) / \tanh (c)$.

Use the Poincaré disc model and assume that the vertex A is at the center of the disk. (The right angle of $A B C_{\triangle}$ is at C.) The lines $A B$ and $A C$ are represented by straight lines, the line $B C$ is represented by an arc of a circle centered at O_{1}. Let B^{\prime} resp. C^{\prime} be the second intersection of $O B$ resp $O C$ with this circle and B_{1} be the orthogonal projection of O to the line $O B$.
Using that the Euclidean distance $O B$ equals $\tanh (c / 2)$ and that $O B \cdot O B^{\prime}=1$ (justify why), prove that the Euclidean distance $B B^{\prime}=2 / \sinh (c)$. Observe that the Euclidean distance $C C^{\prime}$ is similarly equal to $2 / \sinh (b)$. Due to the Star Trek Lemma, the angle $\angle B O_{1} B_{1}$ is equal to $\angle B$. (Why?) Hence

$$
\sin (B)=\frac{B B_{1}}{O_{1} B}=\frac{B B^{\prime}}{2 O_{1} C}=\frac{B B^{\prime}}{C C^{\prime}}=\frac{\sinh (b)}{\sinh (c)}
$$

Finally, using that $\cos (A)=A B_{1} / A O_{1}$, where $A B_{1}=O B+B B^{\prime} / 2$ and $A O_{1}=A C+C C^{\prime} / 2$, prove that

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)}
$$

