Assignment 13

Oral questions

1. Consider the fractional linear transformation $z \mapsto \frac{a z+b}{c z+d}$ where $a, b, c, d \in \mathbb{R}$ and $a d-b c \neq 0$. Introduce $z=z_{1}+z_{2} i$ and calculate explicitly the imaginary part of $\frac{a z+b}{c z+d}$. Prove that the imaginary part of the image is positive for all $z_{2}>0$ if and only if $a d-b c>0$.
Now show that a conjugate fractional linear map $z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}$ takes the upper half plane into itself if and only if $a d-b c<0$.
2. Using $e^{-x}=\tan (\Pi(x) / 2)$, prove the following formulas:

$$
\sin (\Pi(x))=\operatorname{sech}(x), \quad \cos (\Pi(x))=\tanh (x), \quad \tan (\Pi(x))=\operatorname{csch}(x)
$$

Questions to be answered in writing

1. Prove that a fractional linear transformation that takes the Poincare upper half plane onto itself may be written as $f(z)=\frac{a z+b}{c z+d}$ where a, b, c, d are real numbers. (Hints: walk through the cases in the proof of Theorem 1 in the handout on fractional linear transformations. When c is not zero, you may assume it is a real number. You know that any fractional linear transformation may be written as a composition transformations that preserve half planes, except for a single inversion. That inversion should not take your half plane into the interior or the exterior of a circle.)
2. Find the Poincaré distance between the points $P=3+i$ and $Q=(6+\sqrt{2}) / 2+\sqrt{2} / 2 \cdot i$ (in the Poincaré upper half plane model).
