The Fermat point

Let ABC be a triangle whose internal angles are all less than 120° . We define its Fermat point as the point P satisfying $\angle APB = \angle BPC = \angle CPA = 120^{\circ}$. Using this definition, the Fermat point clearly exist since it is the intersection of the (open) arc $\{Q : \angle AQB = 120^{\circ}\}$ with the (open) arc $\{Q : \angle BQC = 120^{\circ}\}$.

Construct the regular triangles $A'BC_{\triangle}$, $AB'C_{\triangle}$, and ABC'_{\triangle} as shown in Fig. 1.

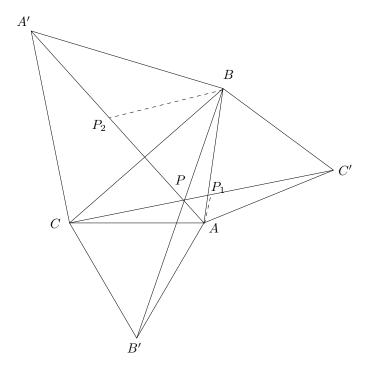


Figure 1: Constructing the Fermat point using regular triangles

Proposition 1 The lines AA', BB' and CC' meet in the Fermat point of the triangle.

Proof: Rotation by 60° around A sends $AB'B_{\Delta}$ into ACC'_{Δ} . Introducing P for the intersection of B'B and C'C we see that $\angle CPB' = 60^\circ$ and so $\angle CPB = 120^\circ$. Let us introduce P_1 for the image of P under this rotation. Then $|P_1C'| = |PB|$ by the congruence induced by the rotation, and $|PP_1| = |PA|$ since PP_1A_{Δ} is a regular triangle. Therefore

$$|CC'| = |CP| + |PP_1| + |P_1C'| = |PA| + |PB| + |PC|.$$

Consider now the rotation by 60° around *B*. This takes $BC'C_{\triangle}$ into BAA'_{\triangle} and let us denote the image of *P* under this rotation by *P*₂. (Note that we know only that *P* is on *CC'*, we don't know yet whether it is also on *AA'*.) By the congruence $BC'C_{\triangle} \cong BAA'_{\triangle}$ we have |AA'| = |CC'| and so |AA'| = |PA| + |PB| + |PC|. Observe also that $|P_2A| = |PC|$ by the congruence induced by the rotation and that $|PP_2| = |PB|$ since PP_2B_{\triangle} is a regular triangle. Therefore we get that

$$|A'P_2| + |P_2P| + |PA| = |PC| + |PB| + |PA| = |A'A|.$$

If P or P_2 is not on the line AA' then (by the triangle inequality), the sum $|A'P_2| + |P_2P| + |PA|$ is strictly greater than |A'A|, in contradiction with the above equality. Thus P is also on the line AA'. Now $\angle CPA = 120^\circ$ follows in analogy with $\angle CPB = 120^\circ$. The first half of the proof of Proposition 1 is almost repeated in the proof of the following characterization of the Fermat point.

Proposition 2 The Fermat point minimizes the sum |QA| + |QB| + |QC| among all points Q in the plane.

Proof: Consider any point Q in the plane that is different from the Fermat point. W.l.o.g. we may

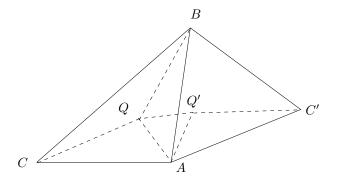


Figure 2: Extremal property of the Fermat point

assume that $\angle AQC \neq 120^{\circ}$. Let us rotate QAC_{\triangle} around A by 60°, as shown in Fig. 2. Denote the image of Q and B respectively by Q' and C' respectively. By rotational congruence we have |QB| = |Q'C'| and we also have |QQ'| = |AQ'| since AQQ'_{\triangle} is regular. Thus

$$|QA| + |QB| + |QC| = |CQ| + |QQ'| + |Q'C|.$$

Since $\angle AQC \neq 120^{0}$, the angle $\angle AQQ' \neq 180^{\circ}$ and, by the triangle inequality, |CQ| + |QQ'| + |Q'C| is strictly more than |CC'. In the proof of the previous proposition we have seen that the Fermat point satisfies |PA| + |PB| + |PC| = |CC'|.