The Fermat point

Let $A B C$ be a triangle whose internal angles are all less than 120°. We define its Fermat point as the point P satisfying $\angle A P B=\angle B P C=\angle C P A=120^{\circ}$. Using this definition, the Fermat point clearly exist since it is the intersection of the (open) arc $\left\{Q: \angle A Q B=120^{\circ}\right\}$ with the (open) arc $\left\{Q: \angle B Q C=120^{\circ}\right\}$.

Construct the regular triangles $A^{\prime} B C_{\Delta}, A B^{\prime} C_{\triangle}$, and $A B C_{\Delta}^{\prime}$ as shown in Fig. ??.

Figure 1: Constructing the Fermat point using regular triangles

Proposition 1 The lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ meet in the Fermat point of the triangle.

Proof: Rotation by 60° around A sends $A B^{\prime} B_{\triangle}$ into $A C C_{\Delta}^{\prime}$. Introducing P for the intersection of $B^{\prime} B$ and $C^{\prime} C$ we see that $\angle C P B^{\prime}=60^{\circ}$ and so $\angle C P B=120^{\circ}$. Let us introduce P_{1} for the image of P under this rotation. Then $\left|P_{1} C^{\prime}\right|=|P B|$ by the congruence induced by the rotation, and $\left|P P_{1}\right|=|P A|$ since $P P_{1} A_{\triangle}$ is a regular triangle. Therefore

$$
\left|C C^{\prime}\right|=|C P|+\left|P P_{1}\right|+\left|P_{1} C^{\prime}\right|=|P A|+|P B|+|P C| .
$$

Consider now the rotation by 60° around B. This takes $B C^{\prime} C_{\triangle}$ into $B A A_{\triangle}^{\prime}$ and let us denote the image of P under this rotation by P_{2}. (Note that we know only that P is on $C C^{\prime}$, we don't know yet whether it is also on $A A^{\prime}$.) By the congruence $B C^{\prime} C_{\triangle} \cong B A A_{\triangle}^{\prime}$ we have $\left|A A^{\prime}\right|=\left|C C^{\prime}\right|$ and so $\left|A A^{\prime}\right|=|P A|+|P B|+|P C|$. Observe also that $\left|P_{2} A^{\prime}\right|=|P C|$ by the congruence induced by the rotation and that $\left|P P_{2}\right|=|P B|$ since $P P_{2} B_{\triangle}$ is a regular triangle. Therefore we get that

$$
\left|A^{\prime} P_{2}\right|+\left|P_{2} P\right|+|P A|=|P C|+|P B|+|P A|=\left|A^{\prime} A\right| .
$$

If P or P_{2} is not on the line $A A^{\prime}$ then (by the triangle inequality), the sum $\left|A^{\prime} P_{2}\right|+\left|P_{2} P\right|+|P A|$ is strictly greater than $\left|A^{\prime} A\right|$, in contradiction with the above equality. Thus P is also on the line $A A^{\prime}$. Now $\angle C P A=120^{\circ}$ follows in analogy with $\angle C P B=120^{\circ}$.

The first half of the proof of Proposition ?? is almost repeated in the proof of the following characterization of the Fermat point.

Proposition 2 The Fermat point minimizes the sum $|Q A|+|Q B|+|Q C|$ among all points Q in the plane.

Proof: Consider any point Q in the plane that is different from the Fermat point. W.l.o.g. we may

Figure 2: Extremal property of the Fermat point
assume that $\angle A Q C \neq 120^{\circ}$. Let us rotate $Q A B_{\triangle}$ around A by 60°, as shown in Fig. ??. Denote the image of Q and B respectively by Q^{\prime} and C^{\prime} respectively. By rotational congruence we have $|Q B|=\left|Q^{\prime} C^{\prime}\right|$ and we also have $\left|Q Q^{\prime}\right|=\left|A Q^{\prime}\right|$ since $A Q Q_{\triangle}^{\prime}$ is regular. Thus

$$
|Q A|+|Q B|+|Q C|=|C Q|+\left|Q Q^{\prime}\right|+\left|Q^{\prime} C\right| .
$$

Since $\angle A Q C \neq 120^{\circ}$, the angle $\angle A Q Q^{\prime} \neq 180^{\circ}$ and, by the triangle inequality, $|C Q|+\left|Q Q^{\prime}\right|+\left|Q^{\prime} C\right|$ is strictly more than $\mid C C^{\prime}$. In the proof of the previous proposition we have seen that the Fermat point satisfies $|P A|+|P B|+|P C|=\left|C C^{\prime}\right|$.

