Assignment 12

Oral questions

1. Schweikart's constant is the distance d for which the angle of parallelism is $\Pi(d)=45^{\circ}$. Prove that for the length function of the Poincaré disk model, Schweikart's constant equals $\log (1+\sqrt{2})$. You may use the following formula in your proof. If a point P is at a Euclidean distance r from the center O then its hyperbolic distance from O is

$$
d(O, P)=\ln \left(\frac{1+r}{1-r}\right)
$$

2. All hyperbolic rotations fixing the point i in the Poincaré upper half plane model are fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ sending i into i. Using this fact, and assuming that we have scaled our coefficients to satisfy $a d-b c=1$, show that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

for some angle θ.

Question to be answered in writing

1. Using $e^{-x}=\tan (\Pi(x) / 2)$, prove the following formulas:

$$
\sin (\Pi(x))=\operatorname{sech}(x), \quad \cos (\Pi(x))=\tanh (x), \quad \tan (\Pi(x))=\operatorname{csch}(x)
$$

