Ceva's theorem

Let $A B C$ be any triangle and choose a point A_{1}, B_{1}, C_{1} on the line segments $B C, A C, A B$, respectively.

Theorem 1 (Ceva) The lines $A A_{1}, B B_{1}$, and $C C_{1}$ are concurrent if and only if

$$
\frac{A C_{1}}{C_{1} B} \cdot \frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A}=1 .
$$

Proof: Assume first the three lines meet in the point P and use the notation shown in the picture below:

The triangles $A C_{1} P_{\triangle}$ and $C_{1} B P_{\triangle}$ have a common altitude at P, so the proportion of their areas is the proportion of the corresponding bases. Thus we may write

$$
\frac{A C_{1}}{C_{1} B}=\frac{P A \cdot P C_{1} \cdot \sin \left(\gamma_{1}\right) / 2}{P B \cdot P C_{1} \cdot \sin \left(\beta_{1}\right) / 2}=\frac{P A \cdot \sin \left(\gamma_{1}\right)}{P B \cdot \sin \left(\beta_{1}\right)} .
$$

Similarly we have

$$
\frac{B A_{1}}{A_{1} C}=\frac{P B \cdot \sin \left(\alpha_{1}\right)}{P C \cdot \sin \left(\gamma_{1}\right)} \quad \text { and } \quad \frac{C B_{1}}{B_{1} A}=\frac{P C \cdot \sin \left(\beta_{1}\right)}{P A \cdot \sin \left(\alpha_{1}\right)} .
$$

Multiplying the three fractions we get 1 . For the converse, assume that A_{1}, B_{1} and C_{1} satisfy

$$
\frac{A C_{1}}{C_{1} B} \cdot \frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A}=1
$$

We may rewrite this as

$$
\frac{A C_{1}}{C_{1} B}=\frac{A_{1} C}{B A_{1}} \cdot \frac{B_{1} A}{C B_{1}} .
$$

Define P^{*} as the intersection of $A A_{1}$ and $B B_{1}$ and let $C *$ be the intersection of $C P^{*}$ with $A B$:

By the already shown implication of Ceva's theorem we have

$$
\frac{A C^{*}}{C^{*} B} \cdot \frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A}=1,
$$

and so

$$
\frac{A C^{*}}{C^{*} B}=\frac{A_{1} C}{B A_{1}} \cdot \frac{B_{1} A}{C B_{1}}
$$

We obtained that $C^{*}=C_{1}$ since they both subdivide $A B$ into two segments of the same proportions. Therefore $C C_{1}$ also passes through P^{*}.

The following equivalent form of Ceva's theorem is often useful.

Theorem 2 (Ceva) Using the notation of the picture below

the lines $A A_{1}, B B_{1}$, and $C C_{1}$ are concurrent if and only if

$$
\sin \left(\alpha_{1}\right) \sin \left(\beta_{1}\right) \sin \left(\gamma_{1}\right)=\sin \left(\alpha-\alpha_{1}\right) \sin \left(\beta-\beta_{1}\right) \sin \left(\gamma-\gamma_{1}\right) .
$$

Proof: The triangles $A C_{1} C_{\triangle}$ and $C_{1} B C_{\triangle}$ have a common altitude at C, so the proportion of their areas is the proportion of the corresponding bases. Thus we may write

$$
\frac{A C_{1}}{C_{1} B}=\frac{A C \cdot C C_{1} \cdot \sin \left(\gamma_{1}\right) / 2}{B C \cdot C C_{1} \cdot \sin \left(\gamma-\gamma_{1}\right) / 2}=\frac{A C \cdot \sin \left(\gamma_{1}\right)}{B C \cdot \sin \left(\gamma-\gamma_{1}\right)} .
$$

Similarly we have

$$
\frac{B A_{1}}{A_{1} C}=\frac{A B \cdot \sin \left(\alpha_{1}\right)}{A C \cdot \sin \left(\alpha-\alpha_{1}\right)} \quad \text { and } \quad \frac{C B_{1}}{B_{1} A}=\frac{B C \cdot \sin \left(\beta_{1}\right)}{A B \cdot \sin \left(\beta-\beta_{1}\right)} .
$$

Multiplying the three equations we get that Ceva's condition is equivalent to

$$
\frac{A C \cdot \sin \left(\gamma_{1}\right)}{B C \cdot \sin \left(\gamma-\gamma_{1}\right)} \cdot \frac{A B \cdot \sin \left(\alpha_{1}\right)}{A C \cdot \sin \left(\alpha-\alpha_{1}\right)} \cdot \frac{B C \cdot \sin \left(\beta_{1}\right)}{A B \cdot \sin \left(\beta-\beta_{1}\right)}=1 .
$$

Multiplying both sides with $\sin \left(\alpha-\alpha_{1}\right) \sin \left(\beta-\beta_{1}\right) \sin \left(\gamma-\gamma_{1}\right)$ yields the statement.

