Fractional linear transformations that are isometries of the Poincaré disk

A fractional linear transformation $z \mapsto \frac{a z+b}{c z+d}$ that maps the unit disk $|z|<1$ onto itself, must satisfy

$$
\frac{a z+b}{c z+d} \cdot \frac{\overline{a z+b}}{\overline{c z+d}}=1 \quad \text { for all } z \in \mathbb{C} \text { satisfying }|z|=1 \text {. }
$$

Multiplying both sides by $(c z+d)(\overline{c z+d})$ yields

$$
(a z+b)(\overline{a z+b})=(c z+d)(\overline{c z+d}) \quad \text { for all } z \in \mathbb{C} \text { satisfying }|z|=1
$$

Using $z \bar{z}=1$, after rearranging we obtain

$$
|a|^{2}+|b|^{2}-|c|^{2}-|d|^{2}=(c \bar{d}-a \bar{b}) z+(\bar{c} d-\bar{a} b) \bar{z} \quad \text { for all } z \in \mathbb{C} \text { satisfying }|z|=1
$$

Introducing $e:=c \bar{d}-a \bar{b}$, the last equation may be rewritten as

$$
|a|^{2}+|b|^{2}-|c|^{2}-|d|^{2}=2|e| \cos (\arg (e)+\arg (z)) \quad \text { for all } z \in \mathbb{C} \text { satisfying }|z|=1 .
$$

The left hand side is constant, whereas the right hand side varies as $\arg (z)$ changes, unless $e=0$. This yields the equations

$$
\begin{gather*}
|a|^{2}+|b|^{2}-|c|^{2}-|d|^{2}=0 \quad \text { and } \tag{1}\\
\bar{c} d=\bar{a} b . \tag{2}
\end{gather*}
$$

From here we distinguish to cases depending on whether $c=0$.
Case 1: $c=0$. Since $a d-b c \neq 0$, in this case we have $a d \neq 0$. Equation (2) implies $\bar{a} b=0$, and since $a d \neq 0$, we must have $b=0$. Equation (2) may be restated as $|a|^{2}=|d|^{2}$. The map $z \mapsto \frac{a z+b}{c z+d}$ is of the form $z \mapsto \frac{a z}{d}$ where $\left|\frac{a}{d}\right|=1$. We In this case our fractional linear transformation is a rotation about the origin.

Case 2: $c \neq 0$. Since we are allowed to multiply all of a, b, c, d by the same nonzero complex number, we may assume $c=1$. Equation (2) may be restated as

$$
\begin{equation*}
d=\bar{a} b, \tag{3}
\end{equation*}
$$

and substituting this and $c=1$ into equation (1) we obtain $|a|^{2}+|b|^{2}-1-|a|^{2}|b|^{2}$, or, equivalently

$$
\left(|a|^{2}-1\right)\left(|b|^{2}-1\right)=0
$$

Since $a d-b c=a \bar{a} b-b=\left(|a|^{2}-1\right) b$ is not zero, the last highlighted equation implies

$$
\begin{equation*}
|b|=1 \tag{4}
\end{equation*}
$$

We may rewrite the map $z \mapsto \frac{a z+b}{c z+d} \mathrm{a} z \mapsto \frac{a \frac{z}{b}+1}{\frac{z}{b}+\bar{a}}$. This map may be described as the rotation about the origin $z \mapsto \frac{z}{b}$, followed by the map $z \mapsto \frac{a z+1}{z+\bar{a}}$. This second map is supposed to take $z=0$ into a point in the Poincaré disk, we must have $|1 / \bar{a}|<1$ or, equivalently, $|a|>1$.

Lemma 1 Given a nonzero complex number a of length greater than 1, the fractional linear transformation $z \mapsto \frac{a z+1}{z+\bar{a}}$ may be described as the inversion about the circle centered at $-\bar{a}$, of radius $\sqrt{|a|^{2}-1}$, followed by a reflection about the vertical axis.

Proof: The inversion is given by

$$
z \mapsto-\bar{a}+\frac{a \bar{a}-1}{\bar{z}+a}=\frac{-\bar{a}(\bar{z}+a)+a \bar{a}-1}{\bar{z}+a}=\frac{-\overline{a z}-1}{\bar{z}+a} .
$$

Taking the negative of the conjugate of the end result amounts to a reflection about the vertical axis. Indeed, conjugation is a reflection about the horizontal axis, taking the negative amounts to a reflection about the origin, combining the two amounts to a reflection about the vertical axis.

It should be noted that the circle centered at $-\bar{a}$, of radius $\sqrt{|a|^{2}-1}$, is orthogonal to the boundary of the Poincaré disk.

We may summarize our findings as follows.

Theorem 1 Every fractional linear transformation that takes the Poincaré disk onto itself, may be written as a composition of at most two of the following maps:

1. a rotation about the center about the Poincare disk;
2. an inversion about a circle that is perpendicular to the boundary of the Poincaré disk, followed by a reflection about the vertical axis.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.

