Fractional linear transformations that are isometries of the Poincaré disk

A fractional linear transformation $z \mapsto \frac{az+b}{cz+d}$ that maps the unit disk |z| < 1 onto itself, must satisfy

$$\frac{az+b}{cz+d} \cdot \frac{\overline{az+b}}{\overline{cz+d}} = 1 \quad \text{for all } z \in \mathbb{C} \text{ satisfying } |z| = 1.$$

Multiplying both sides by $(cz + d)(\overline{cz + d})$ yields

$$(az+b)(\overline{az+b}) = (cz+d)(\overline{cz+d})$$
 for all $z \in \mathbb{C}$ satisfying $|z| = 1$.

Using $z\overline{z} = 1$, after rearranging we obtain

$$|a|^2 + |b|^2 - |c|^2 - |d|^2 = (c\overline{d} - a\overline{b})z + (\overline{c}d - \overline{a}b)\overline{z} \quad \text{for all } z \in \mathbb{C} \text{ satisfying } |z| = 1.$$

Introducing $e := c\overline{d} - a\overline{b}$, the last equation may be rewritten as

$$|a|^{2} + |b|^{2} - |c|^{2} - |d|^{2} = 2|e|\cos(\arg(e) + \arg(z))$$
 for all $z \in \mathbb{C}$ satisfying $|z| = 1$.

The left hand side is constant, whereas the right hand side varies as $\arg(z)$ changes, unless e = 0. This yields the equations

$$|a|^{2} + |b|^{2} - |c|^{2} - |d|^{2} = 0 \quad \text{and} \tag{1}$$

$$\overline{c}d = \overline{a}b. \tag{2}$$

From here we distinguish to cases depending on whether c = 0.

Case 1: c = 0. Since $ad - bc \neq 0$, in this case we have $ad \neq 0$. Equation (2) implies $\overline{a}b = 0$, and since $ad \neq 0$, we must have b = 0. Equation (2) may be restated as $|a|^2 = |d|^2$. The map $z \mapsto \frac{az+b}{cz+d}$ is of the form $z \mapsto \frac{az}{d}$ where $\left|\frac{a}{d}\right| = 1$. We In this case our fractional linear transformation is a rotation about the origin.

Case 2: $c \neq 0$. Since we are allowed to multiply all of a, b, c, d by the same nonzero complex number, we may assume c = 1. Equation (2) may be restated as

$$d = \overline{a}b,\tag{3}$$

and substituting this and c = 1 into equation (1) we obtain $|a|^2 + |b|^2 - 1 - |a|^2|b|^2$, or, equivalently

$$(|a|^2 - 1)(|b|^2 - 1) = 0.$$

Since $ad - bc = a\overline{a}b - b = (|a|^2 - 1)b$ is not zero, the last highlighted equation implies

$$|b| = 1. \tag{4}$$

We may rewrite the map $z \mapsto \frac{az+b}{cz+d}$ a $z \mapsto \frac{a\frac{z}{b}+1}{\frac{z}{b}+\overline{a}}$. This map may be described as the rotation about the origin $z \mapsto \frac{z}{b}$, followed by the map $z \mapsto \frac{az+1}{z+\overline{a}}$. This second map is supposed to take z = 0 into a point in the Poincaré disk, we must have $|1/\overline{a}| < 1$ or, equivalently, |a| > 1.

Lemma 1 Given a nonzero complex number a of length greater than 1, the fractional linear transformation $z \mapsto \frac{az+1}{z+\overline{a}}$ may be described as the inversion about the circle centered at $-\overline{a}$, of radius $\sqrt{|a|^2-1}$, followed by a reflection about the vertical axis.

Proof: The inversion is given by

$$z\mapsto -\overline{a}+\frac{a\overline{a}-1}{\overline{z}+a}=\frac{-\overline{a}(\overline{z}+a)+a\overline{a}-1}{\overline{z}+a}=\frac{-\overline{a}\overline{z}-1}{\overline{z}+a}.$$

Taking the negative of the conjugate of the end result amounts to a reflection about the vertical axis. Indeed, conjugation is a reflection about the horizontal axis, taking the negative amounts to a reflection about the origin, combining the two amounts to a reflection about the vertical axis. \Diamond

It should be noted that the circle centered at $-\overline{a}$, of radius $\sqrt{|a|^2 - 1}$, is orthogonal to the boundary of the Poincaré disk.

We may summarize our findings as follows.

Theorem 1 Every fractional linear transformation that takes the Poincaré disk onto itself, may be written as a composition of at most two of the following maps:

- 1. a rotation about the center about the Poincaré disk;
- 2. an inversion about a circle that is perpendicular to the boundary of the Poincaré disk, followed by a reflection about the vertical axis.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.