Fractional linear transformations preserving the Poincaré upper half plane

A fractional linear transformation $z \mapsto \frac{a z+b}{c z+d}$ maps the Poincaré upper half plane onto itself exactly when it has following properties:

1. there is a nonzero complex number w such that $a w, b w, c w$ and $d w$ are real numbers, so a, b, c and d may be assumed to be real;
2. after rewriting the map with real coefficients a, b, c, d, the determinant $a d-b c$ is positive.

We leave the proof of this claims as an exercise. After dividing each of the real a, b, c, and d by $\sqrt{a d-b c}$, if necessary, from now on we may assume $a d-b c=1$.

Corollary 1 The group of fractional linear transformations mapping the Poincaré upper half plane onto itself is isomorphic to the group $\mathrm{SL}_{2}(\mathbb{R})$.

For details, see Professor Royster's notes [1]

Theorem 1 The group $\mathrm{SL}_{2}(\mathbb{R})$ is generated by the map

$$
\sigma=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \quad \text { and the maps } \quad \tau_{r}=\left[\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right] \quad \text { for all } r \in \mathbb{R} .
$$

Proof: Consider a matrix

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{R})
$$

Case 1: $a \neq 0$. As seen in our lecture notes [1], in this case we may look for our matrix in the form

$$
M=\sigma \tau_{t} \sigma \tau_{s} \sigma \tau_{r}=\left[\begin{array}{rr}
-s & 1-r s \tag{1}\\
s t-1 & r s t-r-t
\end{array}\right] .
$$

We may set $s=-a$. Solving $b=1-r s=1+r a$ yields $r=(b-1) / a$ and solving $c=s t-1=-a t-1$ yields $t=(-c-1) / a$. Setting r and s as above implies $d=r s t=r-t$, because of $a d-b c=1$.

Case 2: $a=0$. In this case, b and c can not be zero by $a c-b d=1$. We will look for our matrix in the form

$$
M=\tau_{t} \sigma \tau_{s} \sigma \tau_{r}=\left[\begin{array}{ll}
1 & t \tag{2}\\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & -r \\
s & r s-1
\end{array}\right]=\left[\begin{array}{rr}
-1+s t & -r-t+r s t \\
s & r s-1
\end{array}\right] .
$$

We set $c=s$ and solving $a=0$ yields $t=1 / c$. Solving $d=r s-1$, that is $d=r c-1$, yields $r=(d+1) / c$. Substituting the obtained values of r, s and t gives

$$
-r-t+r s t=-\frac{d+1}{c}-\frac{1}{c}+\frac{d+1}{c}=-\frac{1}{c},
$$

which is exactly b by $a c-b d=1$.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.

