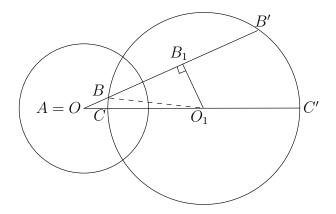
Theorem 1 Assume that ABC_{\triangle} is a right triangle, with its right angle at C, in the hyperbolic plane represented by the Poincaré disk model. Then

$$\sin(B) = \frac{\sinh(b)}{\sinh(c)} \quad and \quad \cos(A) = \frac{\tanh(b)}{\tanh(c)}.$$

Proof: Without loss of generality we may assume that A is at the center of the Poincaré disk.



The lines AB and AC are represented by straight lines, the line BC is represented by an arc of a circle C_1 centered at O_1 . Let B' resp. C' be the second intersection of OB resp OC with this circle and B_1 be the orthogonal projection of O to the line OB.

Since the Poincaré disk and the circle C_1 are orthogonal to each other, the power of A = O with respect to C_1 is 1 (=the radius of the Poincaré disk). Hence the Euclidean distance OB satisfies $OB \cdot OB' = 1$. We also know that the Euclidean distance OB equals tanh(c/2). Thus

$$BB' = OB' - OB = 1/OB - OB = 1/\tanh(c/2) - \tanh(c/2) = \frac{\cosh(c/2)}{\sinh(c/2)} - \frac{\sinh(c/2)}{\cosh(c/2)}$$
$$= \frac{\cosh^2(c/2) - \sinh^2(c/2)}{\sinh(c/2) \cdot \cosh(c/2)} = \frac{2}{2 \cdot \sinh(c/2) \cdot \cosh(c/2)} = \frac{2}{\sinh(c)}$$

Similarly, since the Euclidean distance OC equals $\tanh(b/2)$, we get $CC' = 2/\sinh(b)$. The angle of ABC_{\triangle} at B is the angle between the tangent of C_1 at B and the line OB. Due to the Star Trek Lemma, this is the half of the central angle $\angle BO_1B'$, which is equal to $\angle BO_1B_1$. Hence $\sin(B)$ may be calculated from the right triangle $O_1B_1B_{\triangle}$, and we get

$$\sin(B) = \frac{BB_1}{O_1B} = \frac{BB'}{2O_1C} = \frac{BB'}{CC'} = \frac{\sinh(b)}{\sinh(c)}.$$

We may calculate $\cos(A)$ using $\cos(A) = AB_1/AO_1$. Here

$$AB_{1} = OB + BB'/2 = \tanh(c/2) + 1/\sinh(c) = \frac{\sinh(c/2)}{\cosh(c/2)} + \frac{1}{2\sinh(c/2)\cosh(c/2)}$$
$$= \frac{2\sinh^{2}(c/2) + 1}{2\sinh(c/2)\cosh(c/2)} = \frac{2\sinh^{2}(c/2) + \cosh^{2}(c/2) - \sinh^{2}(c/2)}{\sinh(c)} = \frac{\cosh^{2}(c/2) + \sinh^{2}(c/2)}{\sinh(c)}$$
$$= \frac{\cosh(c)}{\sinh(c)} = \frac{1}{\tanh(c)}.$$

Similarly, $AO_1 = AC + CC'/2$ yields $AO_1 = 1/\tanh(b)$ and so we obtain

$$\cos(A) = AB_1/AO_1 = \frac{\tanh(b)}{\tanh(c)}$$

\sim

In analogy to the formulas for $\sin(B)$ and $\cos(A)$ we also have

$$sin(A) = \frac{\sinh(a)}{\sinh(c)} \quad \text{and} \quad \cos(B) = \frac{\tanh(a)}{\tanh(c)}.$$

Since $1 = \sin^2(A) + \cos^2(A)$, we get

$$1 = \frac{\sinh^2(a)}{\sinh^2(c)} + \frac{\tanh^2(b)}{\tanh^2(c)} = \frac{\sinh^2(a) + \tanh^2(b) \cdot \cosh^2(c)}{\sinh^2(c)} = \frac{\sinh^2(a) \cosh^2(b) + \sinh^2(b) \cdot \cosh^2(c)}{\cosh^2(b) \sinh^2(c)}$$

Multiplying both sides with $\cosh^2(b) \sinh^2(c)$ we get

$$\cosh^2(b)\sinh^2(c) = \sinh^2(a)\cosh^2(b) + \sinh^2(b) \cdot \cosh^2(c)$$

Using the identity $\sinh^2(x) = \cosh^2(x) - 1$ we may get rid of the hyperbolic sines and write

$$\cosh^{2}(b)(\cosh^{2}(c) - 1) = (\cosh^{2}(a) - 1)\cosh^{2}(b) + (\cosh^{2}(b) - 1)\cdot\cosh^{2}(c), \quad \text{i.e.},$$
$$\cosh^{2}(b)\cosh^{2}(c) - \cosh^{2}(b) = \cosh^{2}(a)\cosh^{2}(b) - \cosh^{2}(b) + \cosh^{2}(b)\cosh^{2}(c) - \cosh^{2}(c).$$

Adding $\cosh^2(b) + \cosh^2(c) - \cosh^2(b) \cosh^2(c)$ yields

$$\cosh^2(c) = \cosh^2(a)\cosh^2(b).$$

Since the range of the hyperbolic cosine function is a subset of the positive real numbers, we may take the square root on both sides and get the hyperbolic Pythagorean theorem:

Theorem 2 If a, b, c are the sides of a hyperbolic right triangle, c is the hypotenuse and the hyperbolic plane is the Poincaré disk model then

 $\cosh(c) = \cosh(a)\cosh(b).$

$$(0) = 0.0011(0) = 0.0011(0)$$