The hyperbolic laws of sines and cosines for general triangles
We consider the Poincaré disk model. Recall that, in this model, any right triangle $\triangle A B C$ with the right angle at C satisfies

$$
\begin{gather*}
\cosh (c)=\cosh (a) \cosh (b) \tag{1}\\
\cos (A)=\frac{\tanh (b)}{\tanh (c)} \text { and } \tag{2}\\
\sin (B)=\frac{\sinh (b)}{\sinh (c)} \tag{3}
\end{gather*}
$$

To prove the hyperbolic laws of sines and cosines, we will use the following figure:

Theorem 1 (Hyperbolic law of sines) Any triangle in the Poincaré disk model satisfies

$$
\frac{\sin (A)}{\sinh (a)}=\frac{\sin (B)}{\sinh (b)}=\frac{\sin (C)}{\sinh (c)} .
$$

Proof: Applying (3) to the right triangle $A B B_{1}$ yields

$$
\sin (A)=\frac{\sinh (h)}{\sinh (c)}
$$

This equation allows us to express $\sinh (h)$ as follows:

$$
\sinh (h)=\sin (A) \sinh (c) .
$$

Similarly, applying (3) to the right triangle $C B B_{1}$ allows us to write

$$
\sinh (h)=\sin (C) \sinh (a) .
$$

Therefore we have

$$
\sin (A) \sinh (c)=\sin (C) \sinh (a),
$$

since both sides equal $\sinh (h)$. Dividing both sides by $\sinh (a) \sinh (c)$ yields

$$
\frac{\sin (A)}{\sinh (a)}=\frac{\sin (C)}{\sinh (c)}
$$

The equality

$$
\frac{\sin (A)}{\sinh (a)}=\frac{\sin (B)}{\sinh (b)}
$$

may be shown in a completely similar fashion.

Theorem 2 (Hyperbolic law of cosines) Any triangle in the in the Poincaré disk model satisfies

$$
\cosh (a)=\cosh (b) \cosh (c)-\sinh (b) \sinh (c) \cos (A) .
$$

Proof: Applying (1) to the right triangle $\triangle B B_{1} C$ yields

$$
\cosh (a)=\cosh \left(b_{2}\right) \cosh (h)
$$

Let us replace b_{2} with $b-b_{1}$ in the above equation. After applying the formula $\cosh (x-y)=$ $\cosh (x) \cosh (y)-\sinh (x) \sinh (y)$ we obtain

$$
\cosh (a)=\cosh (b) \cosh \left(b_{1}\right) \cosh (h)-\sinh (b) \sinh \left(b_{1}\right) \cosh (h) .
$$

Applying (1) to the right triangle $\triangle B B_{1} A$ we may replace both occurrences of $\cosh (h)$ above with $\cosh (c) / \cosh \left(b_{1}\right)$ and obtain

$$
\begin{gathered}
\cosh (a)=\cosh (b) \cosh (c)-\sinh (b) \sinh \left(b_{1}\right) \frac{\cosh (c)}{\cosh \left(b_{1}\right)}, \quad \text { that is, } \\
\cosh (a)=\cosh (b) \cosh (c)-\sinh (b) \sinh (c) \frac{\tanh \left(b_{1}\right)}{\tanh (c)}
\end{gathered}
$$

Finally, (2) applied to the right triangle $\triangle B B_{1} A$ allows replacing $\tanh \left(b_{1}\right) / \tanh (c)$ with $\cos (A)$.

Theorem 3 (Second hyperbolic law of cosines) Any triangle in the in the Poincaré disk model satisfies

$$
\cos (B)=-\cos (A) \cos (C)+\sin (A) \sin (C) \cosh (b)
$$

Proof: Let us write (1) for the triangles $\triangle B B_{1} A$ and $\triangle C B_{1} A$, and multiply them together. We get

$$
\cosh (a) \cosh (c)=\cosh ^{2}(h) \cosh \left(b_{1}\right) \cosh \left(b_{2}\right) .
$$

After multiplying both sides by $\cosh \left(b_{1}+b_{2}\right)=\cosh (b)$ we obtain

$$
\cosh (a) \cosh (c)\left(\cosh \left(b_{1}\right) \cosh \left(b_{2}\right)+\sinh \left(b_{1}\right) \sinh \left(b_{2}\right)\right)=\cosh (b) \cosh ^{2}(h) \cosh \left(b_{1}\right) \cosh \left(b_{2}\right) .
$$

Replacing $\cosh ^{2}(h)$ with $1+\sinh ^{2}(h)$ and dividing both sides by $\cosh \left(b_{1}\right) \cosh \left(b_{2}\right)$ yields

$$
\cosh (a) \cosh (c)\left(1+\tanh \left(b_{1}\right) \tanh \left(b_{2}\right)\right)=\cosh (b)\left(1+\sinh ^{2}(h)\right) .
$$

After rearranging we get

$$
\cosh (a) \cosh (c)-\cosh (b)=-\tanh \left(b_{1}\right) \tanh \left(b_{2}\right) \cosh (c) \cosh (a)+\sinh ^{2}(h) \cosh (b) .
$$

By Theorem 2 we may replace $\cosh (a) \cosh (c)-\cosh (b)$ on the left hand side by $\cos (B) \sinh (a) \sinh (c)$ and get

$$
\cos (B) \sinh (a) \sinh (c)=-\tanh \left(b_{1}\right) \tanh \left(b_{2}\right) \cosh (c) \cosh (a)+\sinh ^{2}(h) \cosh (b) .
$$

Dividing both sides by $\sinh (a) \sinh (c)$ yields

$$
\cos (B)=-\frac{\tanh \left(b_{1}\right)}{\tanh (c)} \frac{\tanh \left(b_{2}\right)}{\tanh (a)}+\frac{\sinh (h)}{\sinh (c)} \frac{\sinh (h)}{\sinh (a)} \cosh (b) .
$$

Finally, applying (2) to $\triangle B B_{1} A$ and $\triangle B B_{1} C$ allows replacing $\tanh \left(b_{1}\right) / \tanh (c)$ with $\cos (A)$ and $\tanh \left(b_{2}\right) / \tanh (a)$ with $\cos (C)$, and applying (3) to $\triangle B B_{1} A$ and $\triangle B B_{1} C$ allows replacing $\sinh (h) / \sinh (c)$ with $\sin (A)$ and $\sinh (h) / \sinh (a)$ with $\sin (C)$.

