Lobachevsky's formula

Theorem 1 In the Poincaré disk model, the angle of parallelism $\Pi(x)$ satisfies the equation

$$
e^{-x}=\tan \left(\frac{\Pi(x)}{2}\right)
$$

Proof: Since the angle of parallelism depends only on the distance x between a line ℓ and a point P, we may assume that the line ℓ is represented by the horizontal diameter $A \Omega$ and that the point P is on the vertical diameter, as shown in the picture below:

The limiting parallel lines to ℓ through P are represented by circular arcs through P which are perpendicular to the base circle, thus $A \Omega$ is a tangent to these arcs. The angle of parallelism $\alpha=\Pi(x)$ is the angle between the vertical line $O P$ and the tangent at P to either of these arcs. Let us denote the intersection of the left tangent with the line $A \Omega$ with T. The triangle $A P T_{\triangle}$ is isosceles, as the line segments $A T$ and $T P$ are parts of tangent lines from T to the same circle. Hence $\angle T A P=\angle T P A=\beta$ and the exterior angle $\angle P T O$ has measure 2β. This angle, and $\alpha=\angle T P O$ are the acute agles of the right triangle $T P O_{\triangle}$. Thus we have

$$
2 \beta+\alpha=\frac{\pi}{2} \quad \text { implying } \quad \beta=\frac{\pi}{4}-\frac{\alpha}{2} .
$$

By inspecting the right triangle $A P O_{\triangle}$ we obtain that the Euclidean length of $O P$ is $\tan (\beta)$. Using the formula

$$
\tan (u-v)=\frac{\tan (u)-\tan (v)}{1+\tan (u) \tan (v)}
$$

we obtain

$$
\tan (\beta)=\frac{1-\tan \left(\frac{\alpha}{2}\right)}{1+\tan \left(\frac{\alpha}{2}\right)} .
$$

Hence the hyperbolic length x of $O P$ satisfies

$$
\begin{aligned}
& e^{x}=\frac{1+\tan (\beta)}{1-\tan (\beta)}=\frac{1+\frac{1-\tan \left(\frac{\alpha}{2}\right)}{1+\tan \left(\frac{\alpha}{2}\right)}}{1-\frac{1-\tan \left(\frac{\alpha}{2}\right)}{1+\tan \left(\frac{\alpha}{2}\right)}}=\frac{1+\tan \left(\frac{\alpha}{2}\right)+1-\tan \left(\frac{\alpha}{2}\right)}{1+\tan \left(\frac{\alpha}{2}\right)-1+\tan \left(\frac{\alpha}{2}\right)}=\frac{1}{\tan \left(\frac{\alpha}{2}\right)}, \quad \text { implying } \\
& e^{-x}=\tan \left(\frac{\alpha}{2}\right) .
\end{aligned}
$$

